Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386130892> ?p ?o ?g. }
- W4386130892 endingPage "102176" @default.
- W4386130892 startingPage "102176" @default.
- W4386130892 abstract "BackgroundFor patients with sentinel lymph node (SLN) metastasis and low risk of residual non-SLN (NSLN) metastasis, axillary lymph node (ALN) dissection could lead to overtreatment. This study aimed to develop and validate an automated preoperative deep learning-based tool to predict the risk of SLN and NSLN metastasis in patients with breast cancer (BC) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) images.MethodsIn this machine learning study, we retrospectively enrolled 988 women with BC from three hospitals in Zhejiang, China between June 1, 2013 to December 31, 2021, June 1, 2017 to December 31, 2021, and January 1, 2019 to June 30, 2023, respectively. Patients were divided into the training set (n = 519), internal validation set (n = 129), external test set 1 (n = 296), and external test set 2 (n = 44). A convolutional neural network (CNN) model was proposed to predict the SLN and NSLN metastasis and was compared with clinical and radiomics approaches. The performance of different models to detect ALN metastasis was measured by the area under the curve (AUC), accuracy, sensitivity, and specificity. This study is registered at ChiCTR, ChiCTR2300070740.FindingsFor SLN prediction, the top-performing model (i.e., the CNN algorithm) achieved encouraging predictive performance in the internal validation set (AUC 0.899, 95% CI, 0.887–0.911), external test set 1 (AUC 0.885, 95% CI, 0.867–0.903), and external test set 2 (AUC 0.768, 95% CI, 0.738–0.798). For NSLN prediction, the CNN-based model also exhibited satisfactory performance in the internal validation set (AUC 0.800, 95% CI, 0.783–0.817), external test set 1 (AUC 0.763, 95% CI, 0.732–0.794), and external test set 2 (AUC 0.728, 95% CI, 0.719–0.738). Based on the subgroup analysis, the CNN model performed well in tumour group smaller than 2.0 cm, with the AUC of 0.801 (internal validation set) and 0.823 (external test set 1). Of 469 patients with BC, the false positive rate of SLN prediction declined from 77.9% to 32.9% using CNN model.InterpretationThe CNN model can predict the SLN status of any detectable lesion size and condition of NSLN in patients with BC. Overall, the CNN model, employing ready DCE-MRI images could serve as a potential technique to assist surgeons in the personalized axillary treatment of in patients with BC non-invasively.FundingNational Key Research and Development projects intergovernmental cooperation in science and technology of China, National Natural Science Foundation of China, Natural Science Foundation of Zhejiang Province, and Zhejiang Medical and Health Science Project." @default.
- W4386130892 created "2023-08-25" @default.
- W4386130892 creator A5000778683 @default.
- W4386130892 creator A5017174775 @default.
- W4386130892 creator A5017660782 @default.
- W4386130892 creator A5019277886 @default.
- W4386130892 creator A5022443904 @default.
- W4386130892 creator A5048055078 @default.
- W4386130892 creator A5051448237 @default.
- W4386130892 creator A5051591723 @default.
- W4386130892 creator A5063291575 @default.
- W4386130892 creator A5071074966 @default.
- W4386130892 creator A5078632666 @default.
- W4386130892 creator A5088539918 @default.
- W4386130892 creator A5090687309 @default.
- W4386130892 date "2023-09-01" @default.
- W4386130892 modified "2023-10-01" @default.
- W4386130892 title "Development and validation of convolutional neural network-based model to predict the risk of sentinel or non-sentinel lymph node metastasis in patients with breast cancer: a machine learning study" @default.
- W4386130892 cites W1979656191 @default.
- W4386130892 cites W2003188860 @default.
- W4386130892 cites W2013301155 @default.
- W4386130892 cites W2027748666 @default.
- W4386130892 cites W2046031580 @default.
- W4386130892 cites W2148412188 @default.
- W4386130892 cites W2148946322 @default.
- W4386130892 cites W2160986504 @default.
- W4386130892 cites W2328176404 @default.
- W4386130892 cites W2529282160 @default.
- W4386130892 cites W2592929672 @default.
- W4386130892 cites W2793847384 @default.
- W4386130892 cites W2802190884 @default.
- W4386130892 cites W2891089580 @default.
- W4386130892 cites W2911605224 @default.
- W4386130892 cites W2913223168 @default.
- W4386130892 cites W2914584363 @default.
- W4386130892 cites W2919115771 @default.
- W4386130892 cites W2979291688 @default.
- W4386130892 cites W2989693433 @default.
- W4386130892 cites W3030688769 @default.
- W4386130892 cites W3102564565 @default.
- W4386130892 cites W3111471645 @default.
- W4386130892 cites W3128646645 @default.
- W4386130892 cites W3163707479 @default.
- W4386130892 cites W3177896729 @default.
- W4386130892 cites W3179615595 @default.
- W4386130892 cites W4200366594 @default.
- W4386130892 cites W4294755849 @default.
- W4386130892 cites W4304203226 @default.
- W4386130892 cites W4313421016 @default.
- W4386130892 doi "https://doi.org/10.1016/j.eclinm.2023.102176" @default.
- W4386130892 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37662514" @default.
- W4386130892 hasPublicationYear "2023" @default.
- W4386130892 type Work @default.
- W4386130892 citedByCount "1" @default.
- W4386130892 countsByYear W43861308922023 @default.
- W4386130892 crossrefType "journal-article" @default.
- W4386130892 hasAuthorship W4386130892A5000778683 @default.
- W4386130892 hasAuthorship W4386130892A5017174775 @default.
- W4386130892 hasAuthorship W4386130892A5017660782 @default.
- W4386130892 hasAuthorship W4386130892A5019277886 @default.
- W4386130892 hasAuthorship W4386130892A5022443904 @default.
- W4386130892 hasAuthorship W4386130892A5048055078 @default.
- W4386130892 hasAuthorship W4386130892A5051448237 @default.
- W4386130892 hasAuthorship W4386130892A5051591723 @default.
- W4386130892 hasAuthorship W4386130892A5063291575 @default.
- W4386130892 hasAuthorship W4386130892A5071074966 @default.
- W4386130892 hasAuthorship W4386130892A5078632666 @default.
- W4386130892 hasAuthorship W4386130892A5088539918 @default.
- W4386130892 hasAuthorship W4386130892A5090687309 @default.
- W4386130892 hasBestOaLocation W43861308921 @default.
- W4386130892 hasConcept C119857082 @default.
- W4386130892 hasConcept C121608353 @default.
- W4386130892 hasConcept C126322002 @default.
- W4386130892 hasConcept C126838900 @default.
- W4386130892 hasConcept C143998085 @default.
- W4386130892 hasConcept C154945302 @default.
- W4386130892 hasConcept C169903167 @default.
- W4386130892 hasConcept C2779013556 @default.
- W4386130892 hasConcept C2780212769 @default.
- W4386130892 hasConcept C41008148 @default.
- W4386130892 hasConcept C530470458 @default.
- W4386130892 hasConcept C71924100 @default.
- W4386130892 hasConcept C81363708 @default.
- W4386130892 hasConceptScore W4386130892C119857082 @default.
- W4386130892 hasConceptScore W4386130892C121608353 @default.
- W4386130892 hasConceptScore W4386130892C126322002 @default.
- W4386130892 hasConceptScore W4386130892C126838900 @default.
- W4386130892 hasConceptScore W4386130892C143998085 @default.
- W4386130892 hasConceptScore W4386130892C154945302 @default.
- W4386130892 hasConceptScore W4386130892C169903167 @default.
- W4386130892 hasConceptScore W4386130892C2779013556 @default.
- W4386130892 hasConceptScore W4386130892C2780212769 @default.
- W4386130892 hasConceptScore W4386130892C41008148 @default.
- W4386130892 hasConceptScore W4386130892C530470458 @default.
- W4386130892 hasConceptScore W4386130892C71924100 @default.
- W4386130892 hasConceptScore W4386130892C81363708 @default.
- W4386130892 hasLocation W43861308921 @default.
- W4386130892 hasLocation W43861308922 @default.