Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386130987> ?p ?o ?g. }
- W4386130987 endingPage "77" @default.
- W4386130987 startingPage "64" @default.
- W4386130987 abstract "Data-driven porosity prediction in Laser Metal Deposition (LMD) is mainly done with supervised machine learning methods. These methods require labeled thermal signatures for model training, with the “labels” being post-process evaluations of porosity. In practice, acquiring porosity records for newly printed parts is expensive and time-consuming; matching thermal signatures from the printing process with the porosity records is subject to data registration errors. To enable convenient porosity prediction for new part geometry, this study proposes a “knowledge transfer” method to transfer prior statistical knowledge about printed parts to new printing processes. The prior knowledge is leveraged to evaluate the statistical property of new thermal signatures and assign them labels. Supervised machine learning methods can be readily trained with labeled data. The effort for post-process porosity inspection is therefore saved, and the efficiency of data-driven porosity prediction is significantly improved. The proposed method is validated with datasets from an LMD machine, specifically an OPTOMEC LENS 750 system. The statistical inference knowledge about a Ti-6Al-4V thin wall is transferred to two different Ti-6Al-4V cylinders, respectively, to label their thermal signatures and train Convolutional Neural Networks (CNNs) for in-situ porosity prediction. The case study results demonstrate the effectiveness of the proposed method." @default.
- W4386130987 created "2023-08-25" @default.
- W4386130987 creator A5010845074 @default.
- W4386130987 creator A5038634061 @default.
- W4386130987 creator A5041773501 @default.
- W4386130987 date "2023-10-01" @default.
- W4386130987 modified "2023-09-27" @default.
- W4386130987 title "Knowledge-transfer-enabled porosity prediction for new part geometry in laser metal deposition" @default.
- W4386130987 cites W1965437408 @default.
- W4386130987 cites W1965555277 @default.
- W4386130987 cites W1969831389 @default.
- W4386130987 cites W2045076579 @default.
- W4386130987 cites W2057765075 @default.
- W4386130987 cites W2079810998 @default.
- W4386130987 cites W2117101773 @default.
- W4386130987 cites W2270743442 @default.
- W4386130987 cites W2293174830 @default.
- W4386130987 cites W2395579298 @default.
- W4386130987 cites W2408017125 @default.
- W4386130987 cites W2412321691 @default.
- W4386130987 cites W2484953877 @default.
- W4386130987 cites W2618530766 @default.
- W4386130987 cites W2621700966 @default.
- W4386130987 cites W2756421408 @default.
- W4386130987 cites W2772940940 @default.
- W4386130987 cites W2799328997 @default.
- W4386130987 cites W2890582415 @default.
- W4386130987 cites W2901677415 @default.
- W4386130987 cites W2911513144 @default.
- W4386130987 cites W2947580351 @default.
- W4386130987 cites W2963698633 @default.
- W4386130987 cites W2971361125 @default.
- W4386130987 cites W2997893499 @default.
- W4386130987 cites W3011109646 @default.
- W4386130987 cites W3025171962 @default.
- W4386130987 cites W3044867970 @default.
- W4386130987 cites W3095111469 @default.
- W4386130987 cites W3170103843 @default.
- W4386130987 cites W3191904496 @default.
- W4386130987 cites W3193632503 @default.
- W4386130987 cites W3198741602 @default.
- W4386130987 cites W3201945148 @default.
- W4386130987 cites W3202270763 @default.
- W4386130987 cites W3202767637 @default.
- W4386130987 cites W3206479318 @default.
- W4386130987 cites W3216959350 @default.
- W4386130987 cites W4213351422 @default.
- W4386130987 cites W4252606479 @default.
- W4386130987 cites W4283756813 @default.
- W4386130987 cites W4285810525 @default.
- W4386130987 cites W4289877761 @default.
- W4386130987 cites W4292819775 @default.
- W4386130987 cites W4293084343 @default.
- W4386130987 cites W4295300842 @default.
- W4386130987 cites W827372051 @default.
- W4386130987 doi "https://doi.org/10.1016/j.jmapro.2023.08.002" @default.
- W4386130987 hasPublicationYear "2023" @default.
- W4386130987 type Work @default.
- W4386130987 citedByCount "0" @default.
- W4386130987 crossrefType "journal-article" @default.
- W4386130987 hasAuthorship W4386130987A5010845074 @default.
- W4386130987 hasAuthorship W4386130987A5038634061 @default.
- W4386130987 hasAuthorship W4386130987A5041773501 @default.
- W4386130987 hasConcept C111919701 @default.
- W4386130987 hasConcept C121332964 @default.
- W4386130987 hasConcept C150899416 @default.
- W4386130987 hasConcept C151730666 @default.
- W4386130987 hasConcept C153294291 @default.
- W4386130987 hasConcept C154945302 @default.
- W4386130987 hasConcept C159985019 @default.
- W4386130987 hasConcept C192562407 @default.
- W4386130987 hasConcept C204530211 @default.
- W4386130987 hasConcept C2776214188 @default.
- W4386130987 hasConcept C2816523 @default.
- W4386130987 hasConcept C41008148 @default.
- W4386130987 hasConcept C50644808 @default.
- W4386130987 hasConcept C64297162 @default.
- W4386130987 hasConcept C6648577 @default.
- W4386130987 hasConcept C81363708 @default.
- W4386130987 hasConcept C86803240 @default.
- W4386130987 hasConcept C98045186 @default.
- W4386130987 hasConceptScore W4386130987C111919701 @default.
- W4386130987 hasConceptScore W4386130987C121332964 @default.
- W4386130987 hasConceptScore W4386130987C150899416 @default.
- W4386130987 hasConceptScore W4386130987C151730666 @default.
- W4386130987 hasConceptScore W4386130987C153294291 @default.
- W4386130987 hasConceptScore W4386130987C154945302 @default.
- W4386130987 hasConceptScore W4386130987C159985019 @default.
- W4386130987 hasConceptScore W4386130987C192562407 @default.
- W4386130987 hasConceptScore W4386130987C204530211 @default.
- W4386130987 hasConceptScore W4386130987C2776214188 @default.
- W4386130987 hasConceptScore W4386130987C2816523 @default.
- W4386130987 hasConceptScore W4386130987C41008148 @default.
- W4386130987 hasConceptScore W4386130987C50644808 @default.
- W4386130987 hasConceptScore W4386130987C64297162 @default.
- W4386130987 hasConceptScore W4386130987C6648577 @default.
- W4386130987 hasConceptScore W4386130987C81363708 @default.
- W4386130987 hasConceptScore W4386130987C86803240 @default.