Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386132017> ?p ?o ?g. }
- W4386132017 endingPage "e0289613" @default.
- W4386132017 startingPage "e0289613" @default.
- W4386132017 abstract "Hypertension (HTN), a major global health concern, is a leading cause of cardiovascular disease, premature death and disability, worldwide. It is important to develop an automated system to diagnose HTN at an early stage. Therefore, this study devised a machine learning (ML) system for predicting patients with the risk of developing HTN in Ethiopia.The HTN data was taken from Ethiopia, which included 612 respondents with 27 factors. We employed Boruta-based feature selection method to identify the important risk factors of HTN. The four well-known models [logistics regression, artificial neural network, random forest, and extreme gradient boosting (XGB)] were developed to predict HTN patients on the training set using the selected risk factors. The performances of the models were evaluated by accuracy, precision, recall, F1-score, and area under the curve (AUC) on the testing set. Additionally, the SHapley Additive exPlanations (SHAP) method is one of the explainable artificial intelligences (XAI) methods, was used to investigate the associated predictive risk factors of HTN.The overall prevalence of HTN patients is 21.2%. This study showed that XGB-based model was the most appropriate model for predicting patients with the risk of HTN and achieved the accuracy of 88.81%, precision of 89.62%, recall of 97.04%, F1-score of 93.18%, and AUC of 0. 894. The XBG with SHAP analysis reveal that age, weight, fat, income, body mass index, diabetes mulitas, salt, history of HTN, drinking, and smoking were the associated risk factors of developing HTN.The proposed framework provides an effective tool for accurately predicting individuals in Ethiopia who are at risk for developing HTN at an early stage and may help with early prevention and individualized treatment." @default.
- W4386132017 created "2023-08-25" @default.
- W4386132017 creator A5007058356 @default.
- W4386132017 creator A5043353996 @default.
- W4386132017 creator A5044571099 @default.
- W4386132017 creator A5051653396 @default.
- W4386132017 creator A5067409164 @default.
- W4386132017 creator A5074779559 @default.
- W4386132017 creator A5078289354 @default.
- W4386132017 date "2023-08-24" @default.
- W4386132017 modified "2023-09-24" @default.
- W4386132017 title "Predicting the risk of hypertension using machine learning algorithms: A cross sectional study in Ethiopia" @default.
- W4386132017 cites W1494052777 @default.
- W4386132017 cites W1945743190 @default.
- W4386132017 cites W2069360745 @default.
- W4386132017 cites W2169428949 @default.
- W4386132017 cites W2767106145 @default.
- W4386132017 cites W2770242317 @default.
- W4386132017 cites W2793963364 @default.
- W4386132017 cites W2891976836 @default.
- W4386132017 cites W2899736836 @default.
- W4386132017 cites W2899773405 @default.
- W4386132017 cites W2908202794 @default.
- W4386132017 cites W2911964244 @default.
- W4386132017 cites W2942253286 @default.
- W4386132017 cites W2955748575 @default.
- W4386132017 cites W2975860297 @default.
- W4386132017 cites W2977059820 @default.
- W4386132017 cites W2982655810 @default.
- W4386132017 cites W2989219518 @default.
- W4386132017 cites W2995202169 @default.
- W4386132017 cites W2998223455 @default.
- W4386132017 cites W3004465995 @default.
- W4386132017 cites W3011923049 @default.
- W4386132017 cites W3015505811 @default.
- W4386132017 cites W3036111623 @default.
- W4386132017 cites W3084216628 @default.
- W4386132017 cites W3093211539 @default.
- W4386132017 cites W3093474184 @default.
- W4386132017 cites W3110211518 @default.
- W4386132017 cites W3113178943 @default.
- W4386132017 cites W3127596617 @default.
- W4386132017 cites W3137778326 @default.
- W4386132017 cites W3147809485 @default.
- W4386132017 cites W3153999070 @default.
- W4386132017 cites W3156809173 @default.
- W4386132017 cites W3163730245 @default.
- W4386132017 cites W3172102962 @default.
- W4386132017 cites W3173704035 @default.
- W4386132017 cites W3185784324 @default.
- W4386132017 cites W3199599141 @default.
- W4386132017 cites W4205995027 @default.
- W4386132017 cites W4210536607 @default.
- W4386132017 cites W4214776994 @default.
- W4386132017 cites W4214929096 @default.
- W4386132017 cites W4220740899 @default.
- W4386132017 cites W4220845336 @default.
- W4386132017 cites W4223521127 @default.
- W4386132017 cites W4224264857 @default.
- W4386132017 cites W4225324736 @default.
- W4386132017 cites W4226113147 @default.
- W4386132017 cites W4280590180 @default.
- W4386132017 cites W4280604323 @default.
- W4386132017 cites W4283593236 @default.
- W4386132017 cites W4288752043 @default.
- W4386132017 cites W4291670647 @default.
- W4386132017 cites W4293253836 @default.
- W4386132017 cites W4294953387 @default.
- W4386132017 cites W4294959627 @default.
- W4386132017 cites W4306722552 @default.
- W4386132017 cites W4309866180 @default.
- W4386132017 cites W4313478509 @default.
- W4386132017 cites W4319318518 @default.
- W4386132017 cites W4319752841 @default.
- W4386132017 cites W4367856789 @default.
- W4386132017 doi "https://doi.org/10.1371/journal.pone.0289613" @default.
- W4386132017 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37616271" @default.
- W4386132017 hasPublicationYear "2023" @default.
- W4386132017 type Work @default.
- W4386132017 citedByCount "0" @default.
- W4386132017 crossrefType "journal-article" @default.
- W4386132017 hasAuthorship W4386132017A5007058356 @default.
- W4386132017 hasAuthorship W4386132017A5043353996 @default.
- W4386132017 hasAuthorship W4386132017A5044571099 @default.
- W4386132017 hasAuthorship W4386132017A5051653396 @default.
- W4386132017 hasAuthorship W4386132017A5067409164 @default.
- W4386132017 hasAuthorship W4386132017A5074779559 @default.
- W4386132017 hasAuthorship W4386132017A5078289354 @default.
- W4386132017 hasBestOaLocation W43861320171 @default.
- W4386132017 hasConcept C11413529 @default.
- W4386132017 hasConcept C11783203 @default.
- W4386132017 hasConcept C119857082 @default.
- W4386132017 hasConcept C126322002 @default.
- W4386132017 hasConcept C134018914 @default.
- W4386132017 hasConcept C154945302 @default.
- W4386132017 hasConcept C169258074 @default.
- W4386132017 hasConcept C2779134260 @default.
- W4386132017 hasConcept C2780221984 @default.