Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386135571> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4386135571 endingPage "9591" @default.
- W4386135571 startingPage "9591" @default.
- W4386135571 abstract "The early detection of arrhythmia can effectively reduce the risk of serious heart diseases and save time for treatment. Many healthcare devices have been widely used for electrocardiogram (ECG) monitoring. However, most of them can only complete simple two-classes detection and have unacceptable hardware overhead and energy consumption. For achieving accurate and low-power arrhythmia detection, a novel ECG processor application specific integrated circuit (ASIC) is proposed in this paper, which can perform the prediction of five types of cardiac arrhythmias and heart rate monitoring. To realize hardware-efficient R-peak detection, an ECG pre-processing engine based on a first derivative and moving average comparison method is proposed. Efficient arrhythmia detection is realized by the proposed low-power classification engine, which is based on a carefully designed lightweight artificial neural network (ANN) with good prediction accuracy. The hardware reuse strategy is used to implement the hardware logic of ANN, where computations are executed by only one processing unit (PU), which is controlled by a flexible finite state machine (FSM). Also, the weights of ANN are configurable to facilitate model updates. We validate the functionality of the design using real-world ECG data. The proposed ECG processor is implemented using 55 nm CMOS technology, occupying an area of 0.33 mm2. This design consumes 12.88 μW at a 100 kHz clock frequency, achieving a classification accuracy of 96.69%. The comparison results with previous work indicate that our design has advantages in detection performance and power consumption, providing a good solution for low-power and low-cost ECG monitoring." @default.
- W4386135571 created "2023-08-25" @default.
- W4386135571 creator A5008369258 @default.
- W4386135571 creator A5028716128 @default.
- W4386135571 creator A5042261970 @default.
- W4386135571 creator A5050803462 @default.
- W4386135571 creator A5088644939 @default.
- W4386135571 creator A5089180350 @default.
- W4386135571 date "2023-08-24" @default.
- W4386135571 modified "2023-10-18" @default.
- W4386135571 title "A Low-Power ECG Processor ASIC Based on an Artificial Neural Network for Arrhythmia Detection" @default.
- W4386135571 cites W1977036718 @default.
- W4386135571 cites W2080722785 @default.
- W4386135571 cites W2089475953 @default.
- W4386135571 cites W2122708981 @default.
- W4386135571 cites W2162800060 @default.
- W4386135571 cites W2169766445 @default.
- W4386135571 cites W2990491261 @default.
- W4386135571 cites W3122976726 @default.
- W4386135571 cites W3126348555 @default.
- W4386135571 cites W3135060602 @default.
- W4386135571 cites W3161220608 @default.
- W4386135571 cites W3184312100 @default.
- W4386135571 cites W4280608115 @default.
- W4386135571 cites W4379475120 @default.
- W4386135571 doi "https://doi.org/10.3390/app13179591" @default.
- W4386135571 hasPublicationYear "2023" @default.
- W4386135571 type Work @default.
- W4386135571 citedByCount "0" @default.
- W4386135571 crossrefType "journal-article" @default.
- W4386135571 hasAuthorship W4386135571A5008369258 @default.
- W4386135571 hasAuthorship W4386135571A5028716128 @default.
- W4386135571 hasAuthorship W4386135571A5042261970 @default.
- W4386135571 hasAuthorship W4386135571A5050803462 @default.
- W4386135571 hasAuthorship W4386135571A5088644939 @default.
- W4386135571 hasAuthorship W4386135571A5089180350 @default.
- W4386135571 hasBestOaLocation W43861355711 @default.
- W4386135571 hasConcept C111919701 @default.
- W4386135571 hasConcept C149635348 @default.
- W4386135571 hasConcept C154945302 @default.
- W4386135571 hasConcept C2779960059 @default.
- W4386135571 hasConcept C41008148 @default.
- W4386135571 hasConcept C50644808 @default.
- W4386135571 hasConcept C77390884 @default.
- W4386135571 hasConcept C79403827 @default.
- W4386135571 hasConcept C9390403 @default.
- W4386135571 hasConceptScore W4386135571C111919701 @default.
- W4386135571 hasConceptScore W4386135571C149635348 @default.
- W4386135571 hasConceptScore W4386135571C154945302 @default.
- W4386135571 hasConceptScore W4386135571C2779960059 @default.
- W4386135571 hasConceptScore W4386135571C41008148 @default.
- W4386135571 hasConceptScore W4386135571C50644808 @default.
- W4386135571 hasConceptScore W4386135571C77390884 @default.
- W4386135571 hasConceptScore W4386135571C79403827 @default.
- W4386135571 hasConceptScore W4386135571C9390403 @default.
- W4386135571 hasFunder F4320326705 @default.
- W4386135571 hasIssue "17" @default.
- W4386135571 hasLocation W43861355711 @default.
- W4386135571 hasOpenAccess W4386135571 @default.
- W4386135571 hasPrimaryLocation W43861355711 @default.
- W4386135571 hasRelatedWork W2025788129 @default.
- W4386135571 hasRelatedWork W2038603688 @default.
- W4386135571 hasRelatedWork W2057024611 @default.
- W4386135571 hasRelatedWork W2057166433 @default.
- W4386135571 hasRelatedWork W2060153299 @default.
- W4386135571 hasRelatedWork W2391444091 @default.
- W4386135571 hasRelatedWork W2774205278 @default.
- W4386135571 hasRelatedWork W3195617754 @default.
- W4386135571 hasRelatedWork W4205532234 @default.
- W4386135571 hasRelatedWork W974825223 @default.
- W4386135571 hasVolume "13" @default.
- W4386135571 isParatext "false" @default.
- W4386135571 isRetracted "false" @default.
- W4386135571 workType "article" @default.