Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386157151> ?p ?o ?g. }
- W4386157151 endingPage "125154" @default.
- W4386157151 startingPage "125154" @default.
- W4386157151 abstract "Abstract Remaining useful life (RUL) prediction plays an important role in prognostics and health management (PHM) and can significantly enhance equipment reliability and safety in various engineering applications. Accurate RUL prediction enables proactive maintenance planning, helping prevent potential hazards and economic losses caused by equipment failures. Recently, while deep learning-based methods have swept the RUL prediction field, most existing methods still have difficulties in simultaneously extracting multiscale global and local degradation feature information from raw multi-sensor monitoring data. To address these issues, we propose a novel multiscale global and local self-attention-based network (MGLSN) for RUL prediction. MGLSN consists of global and local feature extraction subnetworks based on self-attention, which work in parallel to simultaneously extract the global and local degradation features of equipment and can adaptively focus on more important parts. While the global network captures long-term dependencies between time steps, the local network focuses on modeling local temporal dynamics. The design of parallel feature extraction can avoid the mutual influence of information from global and local aspects. Moreover, MGLSN adopts a multiscale feature extraction design (multiscale self-attention and convolution) to capture the global and local degradation patterns at different scales, which can be combined to better reflect the degradation trend. Experiments on the widely used Commercial Modular Aero-Propulsion System Simulation (CMAPSS), New CMAPSS (N-CMAPSS), and International Conference on Prognostics and Health Management 2008 challenge datasets provided by NASA show that MGLSN significantly outperforms state-of-the-art RUL prediction methods and has great application prospects in the field of PHM." @default.
- W4386157151 created "2023-08-26" @default.
- W4386157151 creator A5025037561 @default.
- W4386157151 creator A5030046423 @default.
- W4386157151 creator A5066049855 @default.
- W4386157151 creator A5090591269 @default.
- W4386157151 date "2023-09-21" @default.
- W4386157151 modified "2023-09-23" @default.
- W4386157151 title "Multi-scale global and local self-attention based network for remaining useful life prediction" @default.
- W4386157151 cites W2005523062 @default.
- W4386157151 cites W2014685668 @default.
- W4386157151 cites W2772084711 @default.
- W4386157151 cites W2910482310 @default.
- W4386157151 cites W3006585575 @default.
- W4386157151 cites W3014146531 @default.
- W4386157151 cites W3037944824 @default.
- W4386157151 cites W3037995823 @default.
- W4386157151 cites W3117446604 @default.
- W4386157151 cites W3119743098 @default.
- W4386157151 cites W3126600466 @default.
- W4386157151 cites W3166925235 @default.
- W4386157151 cites W3167907675 @default.
- W4386157151 cites W3173407600 @default.
- W4386157151 cites W3215392094 @default.
- W4386157151 cites W4206652641 @default.
- W4386157151 cites W4210562913 @default.
- W4386157151 cites W4221071357 @default.
- W4386157151 cites W4226424113 @default.
- W4386157151 cites W4280552892 @default.
- W4386157151 cites W4283211549 @default.
- W4386157151 cites W4285405616 @default.
- W4386157151 cites W4288426052 @default.
- W4386157151 cites W4306811603 @default.
- W4386157151 cites W4313067792 @default.
- W4386157151 cites W4313291852 @default.
- W4386157151 cites W4317436033 @default.
- W4386157151 cites W4319082111 @default.
- W4386157151 cites W4319998033 @default.
- W4386157151 cites W4323363550 @default.
- W4386157151 cites W4360770771 @default.
- W4386157151 cites W4362455129 @default.
- W4386157151 doi "https://doi.org/10.1088/1361-6501/acf401" @default.
- W4386157151 hasPublicationYear "2023" @default.
- W4386157151 type Work @default.
- W4386157151 citedByCount "0" @default.
- W4386157151 crossrefType "journal-article" @default.
- W4386157151 hasAuthorship W4386157151A5025037561 @default.
- W4386157151 hasAuthorship W4386157151A5030046423 @default.
- W4386157151 hasAuthorship W4386157151A5066049855 @default.
- W4386157151 hasAuthorship W4386157151A5090591269 @default.
- W4386157151 hasConcept C101468663 @default.
- W4386157151 hasConcept C111919701 @default.
- W4386157151 hasConcept C119857082 @default.
- W4386157151 hasConcept C121332964 @default.
- W4386157151 hasConcept C124101348 @default.
- W4386157151 hasConcept C127413603 @default.
- W4386157151 hasConcept C129364497 @default.
- W4386157151 hasConcept C138885662 @default.
- W4386157151 hasConcept C154945302 @default.
- W4386157151 hasConcept C163258240 @default.
- W4386157151 hasConcept C200601418 @default.
- W4386157151 hasConcept C202444582 @default.
- W4386157151 hasConcept C2776401178 @default.
- W4386157151 hasConcept C2778755073 @default.
- W4386157151 hasConcept C33923547 @default.
- W4386157151 hasConcept C41008148 @default.
- W4386157151 hasConcept C41895202 @default.
- W4386157151 hasConcept C43214815 @default.
- W4386157151 hasConcept C52622490 @default.
- W4386157151 hasConcept C62520636 @default.
- W4386157151 hasConcept C9652623 @default.
- W4386157151 hasConceptScore W4386157151C101468663 @default.
- W4386157151 hasConceptScore W4386157151C111919701 @default.
- W4386157151 hasConceptScore W4386157151C119857082 @default.
- W4386157151 hasConceptScore W4386157151C121332964 @default.
- W4386157151 hasConceptScore W4386157151C124101348 @default.
- W4386157151 hasConceptScore W4386157151C127413603 @default.
- W4386157151 hasConceptScore W4386157151C129364497 @default.
- W4386157151 hasConceptScore W4386157151C138885662 @default.
- W4386157151 hasConceptScore W4386157151C154945302 @default.
- W4386157151 hasConceptScore W4386157151C163258240 @default.
- W4386157151 hasConceptScore W4386157151C200601418 @default.
- W4386157151 hasConceptScore W4386157151C202444582 @default.
- W4386157151 hasConceptScore W4386157151C2776401178 @default.
- W4386157151 hasConceptScore W4386157151C2778755073 @default.
- W4386157151 hasConceptScore W4386157151C33923547 @default.
- W4386157151 hasConceptScore W4386157151C41008148 @default.
- W4386157151 hasConceptScore W4386157151C41895202 @default.
- W4386157151 hasConceptScore W4386157151C43214815 @default.
- W4386157151 hasConceptScore W4386157151C52622490 @default.
- W4386157151 hasConceptScore W4386157151C62520636 @default.
- W4386157151 hasConceptScore W4386157151C9652623 @default.
- W4386157151 hasFunder F4320321001 @default.
- W4386157151 hasFunder F4320324174 @default.
- W4386157151 hasIssue "12" @default.
- W4386157151 hasLocation W43861571511 @default.
- W4386157151 hasOpenAccess W4386157151 @default.
- W4386157151 hasPrimaryLocation W43861571511 @default.