Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386157368> ?p ?o ?g. }
- W4386157368 endingPage "102894" @default.
- W4386157368 startingPage "102894" @default.
- W4386157368 abstract "Implied volatility has consistently demonstrated its reliability as a superior estimator of the expected short-term volatility of underlying assets. In this study, we employ the newly constructed robust model-free implied volatility (MFIV) indices for Bitcoin and Ethereum (BitVol and EthVol) to explore the asymmetric return-volatility relationship of these cryptocurrencies through the lens of behavioral finance theories. Utilizing the asymmetric quantile regression model (QRM) and the Non-linear ARDL (NARDL) approach, our results reveal a notable difference from equities. Both positive and negative return shocks in the cryptocurrency market lead to an increase in volatility. However, during high volatility regimes, positive (negative) return shocks exert a more substantial impact on positive innovations of volatility for Bitcoin (Ethereum) compared to negative (positive) return shocks. The degree of asymmetry steadily intensifies as we progress from medium to uppermost quantiles of the volatility distribution. These observed phenomena can be attributed to behavioral aspects among market participants, including noise trading, behavioral biases, and fear of missing out (FOMO). Our findings hold significant implications for various aspects of cryptocurrency trading, portfolio hedging strategies, volatility derivatives pricing, and risk management." @default.
- W4386157368 created "2023-08-26" @default.
- W4386157368 creator A5003012090 @default.
- W4386157368 creator A5034536902 @default.
- W4386157368 creator A5038883380 @default.
- W4386157368 creator A5052979321 @default.
- W4386157368 creator A5069803479 @default.
- W4386157368 date "2023-11-01" @default.
- W4386157368 modified "2023-10-14" @default.
- W4386157368 title "Return-volatility relationships in cryptocurrency markets: Evidence from asymmetric quantiles and non-linear ARDL approach" @default.
- W4386157368 cites W1501835916 @default.
- W4386157368 cites W1756089623 @default.
- W4386157368 cites W1960156807 @default.
- W4386157368 cites W1963787328 @default.
- W4386157368 cites W1965635191 @default.
- W4386157368 cites W1966268097 @default.
- W4386157368 cites W1966910378 @default.
- W4386157368 cites W1980535216 @default.
- W4386157368 cites W1984196940 @default.
- W4386157368 cites W1994045802 @default.
- W4386157368 cites W2002497463 @default.
- W4386157368 cites W2005415391 @default.
- W4386157368 cites W2030292838 @default.
- W4386157368 cites W2042442456 @default.
- W4386157368 cites W2042868518 @default.
- W4386157368 cites W2064651043 @default.
- W4386157368 cites W2069510752 @default.
- W4386157368 cites W2072556449 @default.
- W4386157368 cites W2108855171 @default.
- W4386157368 cites W2111682960 @default.
- W4386157368 cites W2118484139 @default.
- W4386157368 cites W2524056167 @default.
- W4386157368 cites W2588960649 @default.
- W4386157368 cites W2594503329 @default.
- W4386157368 cites W2694190980 @default.
- W4386157368 cites W2735809496 @default.
- W4386157368 cites W2758543453 @default.
- W4386157368 cites W2895641385 @default.
- W4386157368 cites W2897385673 @default.
- W4386157368 cites W2897624602 @default.
- W4386157368 cites W2908108931 @default.
- W4386157368 cites W2913862548 @default.
- W4386157368 cites W2915066259 @default.
- W4386157368 cites W2922466487 @default.
- W4386157368 cites W2951027994 @default.
- W4386157368 cites W2964867301 @default.
- W4386157368 cites W2972974471 @default.
- W4386157368 cites W2974417500 @default.
- W4386157368 cites W2994945673 @default.
- W4386157368 cites W3020023952 @default.
- W4386157368 cites W3042188504 @default.
- W4386157368 cites W3080251121 @default.
- W4386157368 cites W3119746879 @default.
- W4386157368 cites W3121766225 @default.
- W4386157368 cites W3121897461 @default.
- W4386157368 cites W3123106637 @default.
- W4386157368 cites W3126072850 @default.
- W4386157368 cites W3134474575 @default.
- W4386157368 cites W3185412984 @default.
- W4386157368 cites W3185680218 @default.
- W4386157368 cites W3199435122 @default.
- W4386157368 cites W4213291470 @default.
- W4386157368 cites W4241653265 @default.
- W4386157368 cites W4241996101 @default.
- W4386157368 cites W4292157289 @default.
- W4386157368 cites W4308329931 @default.
- W4386157368 cites W827054635 @default.
- W4386157368 doi "https://doi.org/10.1016/j.irfa.2023.102894" @default.
- W4386157368 hasPublicationYear "2023" @default.
- W4386157368 type Work @default.
- W4386157368 citedByCount "0" @default.
- W4386157368 crossrefType "journal-article" @default.
- W4386157368 hasAuthorship W4386157368A5003012090 @default.
- W4386157368 hasAuthorship W4386157368A5034536902 @default.
- W4386157368 hasAuthorship W4386157368A5038883380 @default.
- W4386157368 hasAuthorship W4386157368A5052979321 @default.
- W4386157368 hasAuthorship W4386157368A5069803479 @default.
- W4386157368 hasBestOaLocation W43861573681 @default.
- W4386157368 hasConcept C106159729 @default.
- W4386157368 hasConcept C117996083 @default.
- W4386157368 hasConcept C118671147 @default.
- W4386157368 hasConcept C13290067 @default.
- W4386157368 hasConcept C149782125 @default.
- W4386157368 hasConcept C162324750 @default.
- W4386157368 hasConcept C180706569 @default.
- W4386157368 hasConcept C192620184 @default.
- W4386157368 hasConcept C24189920 @default.
- W4386157368 hasConcept C38652104 @default.
- W4386157368 hasConcept C41008148 @default.
- W4386157368 hasConcept C44731940 @default.
- W4386157368 hasConcept C91602232 @default.
- W4386157368 hasConceptScore W4386157368C106159729 @default.
- W4386157368 hasConceptScore W4386157368C117996083 @default.
- W4386157368 hasConceptScore W4386157368C118671147 @default.
- W4386157368 hasConceptScore W4386157368C13290067 @default.
- W4386157368 hasConceptScore W4386157368C149782125 @default.
- W4386157368 hasConceptScore W4386157368C162324750 @default.
- W4386157368 hasConceptScore W4386157368C180706569 @default.