Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386157705> ?p ?o ?g. }
- W4386157705 endingPage "117042" @default.
- W4386157705 startingPage "117042" @default.
- W4386157705 abstract "Computer-assisted medical care can benefit from the lung region segmentation method. Numerous methods provide end-to-end solutions, these methods employ convolution neural networks to segment lung regions from images. The low contrast, unpredictable appearance, and other problems in meidical images have an effect on the accuracy of existing methods. In order to overcome the aforementioned issues, the MSDC (multi-scale dilated convolution) module is added to the short-cut connection, so as to fuse multi-scale features with various receptive fields to obtain more global information of lung area. Moreover, a local attention module which includes channel attention and spatial attention is suggested to give more weight to the lung area to lower the influence of background. Several lung segmentation datasets are employed to evaluate the segmentation performance of images qualitatively and quantitatively. From the experimental results, we can see that the segmentation accuracy of our model outperforms many recent image segmentation methods." @default.
- W4386157705 created "2023-08-26" @default.
- W4386157705 creator A5013038112 @default.
- W4386157705 creator A5053653312 @default.
- W4386157705 creator A5054255067 @default.
- W4386157705 creator A5063179713 @default.
- W4386157705 creator A5082076121 @default.
- W4386157705 date "2023-11-01" @default.
- W4386157705 modified "2023-10-02" @default.
- W4386157705 title "Multi-scale feature fusion network with local attention for lung segmentation" @default.
- W4386157705 cites W1994062553 @default.
- W4386157705 cites W2043624048 @default.
- W4386157705 cites W2047139957 @default.
- W4386157705 cites W2050132071 @default.
- W4386157705 cites W2142514727 @default.
- W4386157705 cites W2169099300 @default.
- W4386157705 cites W2322560226 @default.
- W4386157705 cites W2798174855 @default.
- W4386157705 cites W2884367402 @default.
- W4386157705 cites W2963420686 @default.
- W4386157705 cites W2963881378 @default.
- W4386157705 cites W2971013993 @default.
- W4386157705 cites W3001152983 @default.
- W4386157705 cites W3027763298 @default.
- W4386157705 cites W3032660954 @default.
- W4386157705 cites W3094059395 @default.
- W4386157705 cites W3101507774 @default.
- W4386157705 cites W3103010481 @default.
- W4386157705 cites W3107214063 @default.
- W4386157705 cites W3115781494 @default.
- W4386157705 cites W3138274921 @default.
- W4386157705 cites W3153065561 @default.
- W4386157705 cites W3153388040 @default.
- W4386157705 cites W3164607782 @default.
- W4386157705 cites W3167835495 @default.
- W4386157705 cites W3172220288 @default.
- W4386157705 cites W3184024649 @default.
- W4386157705 cites W3192594032 @default.
- W4386157705 cites W3198163615 @default.
- W4386157705 cites W4280546187 @default.
- W4386157705 doi "https://doi.org/10.1016/j.image.2023.117042" @default.
- W4386157705 hasPublicationYear "2023" @default.
- W4386157705 type Work @default.
- W4386157705 citedByCount "0" @default.
- W4386157705 crossrefType "journal-article" @default.
- W4386157705 hasAuthorship W4386157705A5013038112 @default.
- W4386157705 hasAuthorship W4386157705A5053653312 @default.
- W4386157705 hasAuthorship W4386157705A5054255067 @default.
- W4386157705 hasAuthorship W4386157705A5063179713 @default.
- W4386157705 hasAuthorship W4386157705A5082076121 @default.
- W4386157705 hasConcept C119599485 @default.
- W4386157705 hasConcept C124504099 @default.
- W4386157705 hasConcept C127162648 @default.
- W4386157705 hasConcept C127413603 @default.
- W4386157705 hasConcept C138885662 @default.
- W4386157705 hasConcept C141353440 @default.
- W4386157705 hasConcept C153180895 @default.
- W4386157705 hasConcept C154945302 @default.
- W4386157705 hasConcept C205649164 @default.
- W4386157705 hasConcept C2776401178 @default.
- W4386157705 hasConcept C2778755073 @default.
- W4386157705 hasConcept C31972630 @default.
- W4386157705 hasConcept C41008148 @default.
- W4386157705 hasConcept C41895202 @default.
- W4386157705 hasConcept C45347329 @default.
- W4386157705 hasConcept C50644808 @default.
- W4386157705 hasConcept C58640448 @default.
- W4386157705 hasConcept C65885262 @default.
- W4386157705 hasConcept C76155785 @default.
- W4386157705 hasConcept C81363708 @default.
- W4386157705 hasConcept C89600930 @default.
- W4386157705 hasConceptScore W4386157705C119599485 @default.
- W4386157705 hasConceptScore W4386157705C124504099 @default.
- W4386157705 hasConceptScore W4386157705C127162648 @default.
- W4386157705 hasConceptScore W4386157705C127413603 @default.
- W4386157705 hasConceptScore W4386157705C138885662 @default.
- W4386157705 hasConceptScore W4386157705C141353440 @default.
- W4386157705 hasConceptScore W4386157705C153180895 @default.
- W4386157705 hasConceptScore W4386157705C154945302 @default.
- W4386157705 hasConceptScore W4386157705C205649164 @default.
- W4386157705 hasConceptScore W4386157705C2776401178 @default.
- W4386157705 hasConceptScore W4386157705C2778755073 @default.
- W4386157705 hasConceptScore W4386157705C31972630 @default.
- W4386157705 hasConceptScore W4386157705C41008148 @default.
- W4386157705 hasConceptScore W4386157705C41895202 @default.
- W4386157705 hasConceptScore W4386157705C45347329 @default.
- W4386157705 hasConceptScore W4386157705C50644808 @default.
- W4386157705 hasConceptScore W4386157705C58640448 @default.
- W4386157705 hasConceptScore W4386157705C65885262 @default.
- W4386157705 hasConceptScore W4386157705C76155785 @default.
- W4386157705 hasConceptScore W4386157705C81363708 @default.
- W4386157705 hasConceptScore W4386157705C89600930 @default.
- W4386157705 hasLocation W43861577051 @default.
- W4386157705 hasOpenAccess W4386157705 @default.
- W4386157705 hasPrimaryLocation W43861577051 @default.
- W4386157705 hasRelatedWork W1669643531 @default.
- W4386157705 hasRelatedWork W1982826852 @default.
- W4386157705 hasRelatedWork W2005437358 @default.