Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386159675> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4386159675 abstract "In recent years, most research on urban roadside parking space search has focused on improving the prediction of the vacancy of roadside parking spaces. One simple but expensive practice is setting up sensors in each parking space to provide drivers with realtime parking space information so drivers can find suitable parking spaces. Although providing realtime information on each parking space can help drivers when choosing a driving route, there is a possibility that other drivers take the parking space during the time of getting to the specific parking space. A better approach to the parking space search is to find a suitable parking area rather than specific parking spaces. Predicting the probability of an available parking area can reduce the time the vehicle lingers in search of a parking space. In this study, we proposed to use Deep Q-Learning with fewer sensors to solve the problem. Besides, we used LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit) models to improve the accuracy in estimating the Q value of the Deep Q-learning. Finally, we compared the performance of Q-Learning and Deep Q-Learning using simulated traffic flow data." @default.
- W4386159675 created "2023-08-26" @default.
- W4386159675 creator A5022400769 @default.
- W4386159675 creator A5076855629 @default.
- W4386159675 date "2022-12-01" @default.
- W4386159675 modified "2023-09-25" @default.
- W4386159675 title "Study on Q-Learning and Deep Q-Learning in Urban Roadside Parking Space Search" @default.
- W4386159675 cites W1615615219 @default.
- W4386159675 cites W1995085137 @default.
- W4386159675 cites W2751183335 @default.
- W4386159675 cites W2889883874 @default.
- W4386159675 cites W2921126716 @default.
- W4386159675 cites W2921779942 @default.
- W4386159675 cites W3008295592 @default.
- W4386159675 cites W3087969945 @default.
- W4386159675 cites W4225563630 @default.
- W4386159675 doi "https://doi.org/10.1109/csci58124.2022.00225" @default.
- W4386159675 hasPublicationYear "2022" @default.
- W4386159675 type Work @default.
- W4386159675 citedByCount "0" @default.
- W4386159675 crossrefType "proceedings-article" @default.
- W4386159675 hasAuthorship W4386159675A5022400769 @default.
- W4386159675 hasAuthorship W4386159675A5076855629 @default.
- W4386159675 hasConcept C108583219 @default.
- W4386159675 hasConcept C111919701 @default.
- W4386159675 hasConcept C119857082 @default.
- W4386159675 hasConcept C127413603 @default.
- W4386159675 hasConcept C14353550 @default.
- W4386159675 hasConcept C154945302 @default.
- W4386159675 hasConcept C188116033 @default.
- W4386159675 hasConcept C22212356 @default.
- W4386159675 hasConcept C2776291640 @default.
- W4386159675 hasConcept C2778572836 @default.
- W4386159675 hasConcept C2994392017 @default.
- W4386159675 hasConcept C41008148 @default.
- W4386159675 hasConcept C97541855 @default.
- W4386159675 hasConceptScore W4386159675C108583219 @default.
- W4386159675 hasConceptScore W4386159675C111919701 @default.
- W4386159675 hasConceptScore W4386159675C119857082 @default.
- W4386159675 hasConceptScore W4386159675C127413603 @default.
- W4386159675 hasConceptScore W4386159675C14353550 @default.
- W4386159675 hasConceptScore W4386159675C154945302 @default.
- W4386159675 hasConceptScore W4386159675C188116033 @default.
- W4386159675 hasConceptScore W4386159675C22212356 @default.
- W4386159675 hasConceptScore W4386159675C2776291640 @default.
- W4386159675 hasConceptScore W4386159675C2778572836 @default.
- W4386159675 hasConceptScore W4386159675C2994392017 @default.
- W4386159675 hasConceptScore W4386159675C41008148 @default.
- W4386159675 hasConceptScore W4386159675C97541855 @default.
- W4386159675 hasLocation W43861596751 @default.
- W4386159675 hasOpenAccess W4386159675 @default.
- W4386159675 hasPrimaryLocation W43861596751 @default.
- W4386159675 hasRelatedWork W3014300295 @default.
- W4386159675 hasRelatedWork W3164822677 @default.
- W4386159675 hasRelatedWork W4223943233 @default.
- W4386159675 hasRelatedWork W4225161397 @default.
- W4386159675 hasRelatedWork W4250304930 @default.
- W4386159675 hasRelatedWork W4312200629 @default.
- W4386159675 hasRelatedWork W4360585206 @default.
- W4386159675 hasRelatedWork W4364306694 @default.
- W4386159675 hasRelatedWork W4380075502 @default.
- W4386159675 hasRelatedWork W4380086463 @default.
- W4386159675 isParatext "false" @default.
- W4386159675 isRetracted "false" @default.
- W4386159675 workType "article" @default.