Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386161408> ?p ?o ?g. }
- W4386161408 endingPage "3593" @default.
- W4386161408 startingPage "3593" @default.
- W4386161408 abstract "Picks are key components for the mechanized excavation of coal by mining machinery, with their wear state directly influencing the efficiency of the mining equipment. In response to the difficulty of determining the overall wear state of picks during coal-mining production, a data-driven wear state identification model for picks has been constructed through the enhanced optimization of Long Short-Term Memory (LSTM) networks via Bayesian algorithms. Initially, a mechanical model of pick and coal-rock interaction is established through theoretical analysis, where the stress characteristic of the pick is analyzed, and the wear mechanism of the pick is preliminarily revealed. A method is proposed that categorizes the overall wear state of picks into three types based on the statistical relation of the actual wear amount and the limited wear amount. Subsequently, the vibration signals of the cutting drum from a bolter miner that contain the wear information of picks are decomposed and denoised using wavelet packet decomposition, with the standard deviation of wavelet packet coefficients from decomposed signal nodes selected as the feature signals. These feature signals are normalized and then used to construct a feature matrix representing the vibration signals. Finally, this constructed feature matrix and classification labels are fed into the Bayesian-LSTM network for training, thus resulting in the picks wear state identification model. To validate the effectiveness of the Bayesian-LSTM deep learning algorithm in identifying the overall picks wear state of mining machinery, vibration signals from the X, Y, and Z axes of the cutting drum from a bolter miner at the C coal mine in Shaanxi, China, are collected, effectively processed, and then input into deep LSTM and Back-Propagation (BP) neural networks respectively for comparison. The results showed that the Bayesian-LSTM network achieved a recognition accuracy of 98.33% for picks wear state, showing a clear advantage over LSTM, BP network models, thus providing important references for the identification of picks wear state based on deep learning algorithms. This method only requires the processing and analysis of the equipment parameters automatically collected from bolter miners or other mining equipment, offering the advantages of simplicity, low cost, and high accuracy, and providing a basis for a proper picks replacement strategy." @default.
- W4386161408 created "2023-08-26" @default.
- W4386161408 creator A5021935958 @default.
- W4386161408 creator A5070732235 @default.
- W4386161408 date "2023-08-25" @default.
- W4386161408 modified "2023-09-28" @default.
- W4386161408 title "A Data-Driven Approach Using Enhanced Bayesian-LSTM Deep Neural Networks for Picks Wear State Recognition" @default.
- W4386161408 cites W1992604706 @default.
- W4386161408 cites W2007349046 @default.
- W4386161408 cites W2064675550 @default.
- W4386161408 cites W2136848157 @default.
- W4386161408 cites W2274426299 @default.
- W4386161408 cites W2556345765 @default.
- W4386161408 cites W2579319086 @default.
- W4386161408 cites W2615221939 @default.
- W4386161408 cites W2914207244 @default.
- W4386161408 cites W2919115771 @default.
- W4386161408 cites W2955629379 @default.
- W4386161408 cites W2963838685 @default.
- W4386161408 cites W2966035769 @default.
- W4386161408 cites W2967000986 @default.
- W4386161408 cites W2969346182 @default.
- W4386161408 cites W3092326056 @default.
- W4386161408 cites W3127499906 @default.
- W4386161408 cites W3128782210 @default.
- W4386161408 cites W3129433613 @default.
- W4386161408 cites W3133934458 @default.
- W4386161408 cites W3147061871 @default.
- W4386161408 cites W3177040925 @default.
- W4386161408 cites W3197307613 @default.
- W4386161408 cites W3202317291 @default.
- W4386161408 cites W3209923517 @default.
- W4386161408 cites W4224013066 @default.
- W4386161408 cites W4288391504 @default.
- W4386161408 cites W4323664374 @default.
- W4386161408 cites W4381832912 @default.
- W4386161408 doi "https://doi.org/10.3390/electronics12173593" @default.
- W4386161408 hasPublicationYear "2023" @default.
- W4386161408 type Work @default.
- W4386161408 citedByCount "0" @default.
- W4386161408 crossrefType "journal-article" @default.
- W4386161408 hasAuthorship W4386161408A5021935958 @default.
- W4386161408 hasAuthorship W4386161408A5070732235 @default.
- W4386161408 hasBestOaLocation W43861614081 @default.
- W4386161408 hasConcept C107673813 @default.
- W4386161408 hasConcept C11413529 @default.
- W4386161408 hasConcept C116834253 @default.
- W4386161408 hasConcept C121332964 @default.
- W4386161408 hasConcept C124101348 @default.
- W4386161408 hasConcept C127413603 @default.
- W4386161408 hasConcept C138885662 @default.
- W4386161408 hasConcept C153180895 @default.
- W4386161408 hasConcept C154945302 @default.
- W4386161408 hasConcept C155777637 @default.
- W4386161408 hasConcept C196216189 @default.
- W4386161408 hasConcept C198394728 @default.
- W4386161408 hasConcept C24890656 @default.
- W4386161408 hasConcept C2776401178 @default.
- W4386161408 hasConcept C41008148 @default.
- W4386161408 hasConcept C41895202 @default.
- W4386161408 hasConcept C47432892 @default.
- W4386161408 hasConcept C48103436 @default.
- W4386161408 hasConcept C50644808 @default.
- W4386161408 hasConcept C59822182 @default.
- W4386161408 hasConcept C86803240 @default.
- W4386161408 hasConceptScore W4386161408C107673813 @default.
- W4386161408 hasConceptScore W4386161408C11413529 @default.
- W4386161408 hasConceptScore W4386161408C116834253 @default.
- W4386161408 hasConceptScore W4386161408C121332964 @default.
- W4386161408 hasConceptScore W4386161408C124101348 @default.
- W4386161408 hasConceptScore W4386161408C127413603 @default.
- W4386161408 hasConceptScore W4386161408C138885662 @default.
- W4386161408 hasConceptScore W4386161408C153180895 @default.
- W4386161408 hasConceptScore W4386161408C154945302 @default.
- W4386161408 hasConceptScore W4386161408C155777637 @default.
- W4386161408 hasConceptScore W4386161408C196216189 @default.
- W4386161408 hasConceptScore W4386161408C198394728 @default.
- W4386161408 hasConceptScore W4386161408C24890656 @default.
- W4386161408 hasConceptScore W4386161408C2776401178 @default.
- W4386161408 hasConceptScore W4386161408C41008148 @default.
- W4386161408 hasConceptScore W4386161408C41895202 @default.
- W4386161408 hasConceptScore W4386161408C47432892 @default.
- W4386161408 hasConceptScore W4386161408C48103436 @default.
- W4386161408 hasConceptScore W4386161408C50644808 @default.
- W4386161408 hasConceptScore W4386161408C59822182 @default.
- W4386161408 hasConceptScore W4386161408C86803240 @default.
- W4386161408 hasIssue "17" @default.
- W4386161408 hasLocation W43861614081 @default.
- W4386161408 hasOpenAccess W4386161408 @default.
- W4386161408 hasPrimaryLocation W43861614081 @default.
- W4386161408 hasRelatedWork W1577789985 @default.
- W4386161408 hasRelatedWork W1981378875 @default.
- W4386161408 hasRelatedWork W2123869488 @default.
- W4386161408 hasRelatedWork W2153999384 @default.
- W4386161408 hasRelatedWork W2185970706 @default.
- W4386161408 hasRelatedWork W2382607599 @default.
- W4386161408 hasRelatedWork W2541950815 @default.
- W4386161408 hasRelatedWork W2546942002 @default.