Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386162736> ?p ?o ?g. }
- W4386162736 endingPage "39" @default.
- W4386162736 startingPage "1" @default.
- W4386162736 abstract "Image captioning is a research area of immense importance, aiming to generate natural language descriptions for visual content in the form of still images. The advent of deep learning and more recently vision-language pre-training techniques has revolutionized the field, leading to more sophisticated methods and improved performance. In this survey article, we provide a structured review of deep learning methods in image captioning by presenting a comprehensive taxonomy and discussing each method category in detail. Additionally, we examine the datasets commonly employed in image captioning research, as well as the evaluation metrics used to assess the performance of different captioning models. We address the challenges faced in this field by emphasizing issues such as object hallucination, missing context, illumination conditions, contextual understanding, and referring expressions. We rank different deep learning methods’ performance according to widely used evaluation metrics, giving insight into the current state-of-the-art. Furthermore, we identify several potential future directions for research in this area, which include tackling the information misalignment problem between image and text modalities, mitigating dataset bias, incorporating vision-language pre-training methods to enhance caption generation, and developing improved evaluation tools to accurately measure the quality of image captions." @default.
- W4386162736 created "2023-08-26" @default.
- W4386162736 creator A5040672682 @default.
- W4386162736 creator A5070753126 @default.
- W4386162736 date "2023-10-05" @default.
- W4386162736 modified "2023-10-18" @default.
- W4386162736 title "Deep Learning Approaches on Image Captioning: A Review" @default.
- W4386162736 cites W1536680647 @default.
- W4386162736 cites W1895577753 @default.
- W4386162736 cites W1956340063 @default.
- W4386162736 cites W2064675550 @default.
- W4386162736 cites W2108598243 @default.
- W4386162736 cites W2116341502 @default.
- W4386162736 cites W2157331557 @default.
- W4386162736 cites W2183341477 @default.
- W4386162736 cites W2185175083 @default.
- W4386162736 cites W2194775991 @default.
- W4386162736 cites W2277195237 @default.
- W4386162736 cites W2302086703 @default.
- W4386162736 cites W2506483933 @default.
- W4386162736 cites W2552161745 @default.
- W4386162736 cites W2552839021 @default.
- W4386162736 cites W2558834163 @default.
- W4386162736 cites W2568262903 @default.
- W4386162736 cites W2578190051 @default.
- W4386162736 cites W2579549467 @default.
- W4386162736 cites W2591644541 @default.
- W4386162736 cites W2604178507 @default.
- W4386162736 cites W2607855566 @default.
- W4386162736 cites W2625940279 @default.
- W4386162736 cites W2745461083 @default.
- W4386162736 cites W2754927243 @default.
- W4386162736 cites W2807697862 @default.
- W4386162736 cites W2885013662 @default.
- W4386162736 cites W2886641317 @default.
- W4386162736 cites W2886970679 @default.
- W4386162736 cites W2890531016 @default.
- W4386162736 cites W2896348597 @default.
- W4386162736 cites W2901988662 @default.
- W4386162736 cites W2904993015 @default.
- W4386162736 cites W2913618459 @default.
- W4386162736 cites W2949376505 @default.
- W4386162736 cites W2950096400 @default.
- W4386162736 cites W2955956881 @default.
- W4386162736 cites W2962735233 @default.
- W4386162736 cites W2962793481 @default.
- W4386162736 cites W2963048642 @default.
- W4386162736 cites W2963062932 @default.
- W4386162736 cites W2963084599 @default.
- W4386162736 cites W2963101956 @default.
- W4386162736 cites W2963170456 @default.
- W4386162736 cites W2963201326 @default.
- W4386162736 cites W2963383024 @default.
- W4386162736 cites W2963446712 @default.
- W4386162736 cites W2963536419 @default.
- W4386162736 cites W2963649796 @default.
- W4386162736 cites W2963686907 @default.
- W4386162736 cites W2963743213 @default.
- W4386162736 cites W2963762755 @default.
- W4386162736 cites W2963834202 @default.
- W4386162736 cites W2963938081 @default.
- W4386162736 cites W2963954913 @default.
- W4386162736 cites W2964018924 @default.
- W4386162736 cites W2964080601 @default.
- W4386162736 cites W2964350391 @default.
- W4386162736 cites W2964616647 @default.
- W4386162736 cites W2974212192 @default.
- W4386162736 cites W2979739834 @default.
- W4386162736 cites W2982260276 @default.
- W4386162736 cites W2986670728 @default.
- W4386162736 cites W2989377923 @default.
- W4386162736 cites W2990818246 @default.
- W4386162736 cites W2992478697 @default.
- W4386162736 cites W2997591391 @default.
- W4386162736 cites W3005983418 @default.
- W4386162736 cites W3034655362 @default.
- W4386162736 cites W3034984754 @default.
- W4386162736 cites W3035284526 @default.
- W4386162736 cites W3091588028 @default.
- W4386162736 cites W3095670406 @default.
- W4386162736 cites W3096609285 @default.
- W4386162736 cites W3104279398 @default.
- W4386162736 cites W3106859150 @default.
- W4386162736 cites W3107848485 @default.
- W4386162736 cites W3110019360 @default.
- W4386162736 cites W3126988965 @default.
- W4386162736 cites W3138516171 @default.
- W4386162736 cites W3171125843 @default.
- W4386162736 cites W3172845016 @default.
- W4386162736 cites W3173220247 @default.
- W4386162736 cites W3196091473 @default.
- W4386162736 cites W3196479518 @default.
- W4386162736 cites W3209274285 @default.
- W4386162736 cites W4213298225 @default.
- W4386162736 cites W4282968790 @default.
- W4386162736 cites W4285151156 @default.
- W4386162736 cites W4285602612 @default.
- W4386162736 cites W4288083516 @default.