Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386164037> ?p ?o ?g. }
- W4386164037 endingPage "e1502" @default.
- W4386164037 startingPage "e1502" @default.
- W4386164037 abstract "Ecological biodiversity is declining at an unprecedented rate. To combat such irreversible changes in natural ecosystems, biodiversity conservation initiatives are being conducted globally. However, the lack of a feasible methodology to quantify biodiversity in real-time and investigate population dynamics in spatiotemporal scales prevents the use of ecological data in environmental planning. Traditionally, ecological studies rely on the census of an animal population by the “capture, mark and recapture” technique. In this technique, human field workers manually count, tag and observe tagged individuals, making it time-consuming, expensive, and cumbersome to patrol the entire area. Recent research has also demonstrated the potential for inexpensive and accessible sensors for ecological data monitoring. However, stationary sensors collect localised data which is highly specific on the placement of the setup. In this research, we propose the methodology for biodiversity monitoring utilising state-of-the-art deep learning (DL) methods operating in real-time on sample payloads of mobile robots. Such trained DL algorithms demonstrate a mean average precision (mAP) of 90.51% in an average inference time of 67.62 milliseconds within 6,000 training epochs. We claim that the use of such mobile platform setups inferring real-time ecological data can help us achieve our goal of quick and effective biodiversity surveys. An experimental test payload is fabricated, and online as well as offline field surveys are conducted, validating the proposed methodology for species identification that can be further extended to geo-localisation of flora and fauna in any ecosystem." @default.
- W4386164037 created "2023-08-26" @default.
- W4386164037 creator A5019350288 @default.
- W4386164037 creator A5033384130 @default.
- W4386164037 creator A5049021899 @default.
- W4386164037 date "2023-08-25" @default.
- W4386164037 modified "2023-09-25" @default.
- W4386164037 title "Real-time biodiversity analysis using deep-learning algorithms on mobile robotic platforms" @default.
- W4386164037 cites W2026851420 @default.
- W4386164037 cites W2041314259 @default.
- W4386164037 cites W2144812320 @default.
- W4386164037 cites W2299764710 @default.
- W4386164037 cites W2413367505 @default.
- W4386164037 cites W2473156356 @default.
- W4386164037 cites W2789255992 @default.
- W4386164037 cites W2947469701 @default.
- W4386164037 cites W2981733351 @default.
- W4386164037 cites W2982084551 @default.
- W4386164037 cites W2996945294 @default.
- W4386164037 cites W3000086329 @default.
- W4386164037 cites W3019531985 @default.
- W4386164037 cites W3023135330 @default.
- W4386164037 cites W3083017137 @default.
- W4386164037 cites W3093414036 @default.
- W4386164037 cites W3120258623 @default.
- W4386164037 cites W3185673854 @default.
- W4386164037 cites W3194544468 @default.
- W4386164037 cites W3196309397 @default.
- W4386164037 cites W3216761595 @default.
- W4386164037 cites W4205759668 @default.
- W4386164037 cites W4210883322 @default.
- W4386164037 cites W4281728047 @default.
- W4386164037 doi "https://doi.org/10.7717/peerj-cs.1502" @default.
- W4386164037 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37705641" @default.
- W4386164037 hasPublicationYear "2023" @default.
- W4386164037 type Work @default.
- W4386164037 citedByCount "0" @default.
- W4386164037 crossrefType "journal-article" @default.
- W4386164037 hasAuthorship W4386164037A5019350288 @default.
- W4386164037 hasAuthorship W4386164037A5033384130 @default.
- W4386164037 hasAuthorship W4386164037A5049021899 @default.
- W4386164037 hasBestOaLocation W43861640371 @default.
- W4386164037 hasConcept C116834253 @default.
- W4386164037 hasConcept C119857082 @default.
- W4386164037 hasConcept C124101348 @default.
- W4386164037 hasConcept C130217890 @default.
- W4386164037 hasConcept C134066672 @default.
- W4386164037 hasConcept C144024400 @default.
- W4386164037 hasConcept C149923435 @default.
- W4386164037 hasConcept C154945302 @default.
- W4386164037 hasConcept C158379750 @default.
- W4386164037 hasConcept C18903297 @default.
- W4386164037 hasConcept C197352329 @default.
- W4386164037 hasConcept C202444582 @default.
- W4386164037 hasConcept C2908647359 @default.
- W4386164037 hasConcept C33923547 @default.
- W4386164037 hasConcept C38652104 @default.
- W4386164037 hasConcept C41008148 @default.
- W4386164037 hasConcept C539469273 @default.
- W4386164037 hasConcept C59822182 @default.
- W4386164037 hasConcept C79403827 @default.
- W4386164037 hasConcept C86803240 @default.
- W4386164037 hasConcept C9652623 @default.
- W4386164037 hasConceptScore W4386164037C116834253 @default.
- W4386164037 hasConceptScore W4386164037C119857082 @default.
- W4386164037 hasConceptScore W4386164037C124101348 @default.
- W4386164037 hasConceptScore W4386164037C130217890 @default.
- W4386164037 hasConceptScore W4386164037C134066672 @default.
- W4386164037 hasConceptScore W4386164037C144024400 @default.
- W4386164037 hasConceptScore W4386164037C149923435 @default.
- W4386164037 hasConceptScore W4386164037C154945302 @default.
- W4386164037 hasConceptScore W4386164037C158379750 @default.
- W4386164037 hasConceptScore W4386164037C18903297 @default.
- W4386164037 hasConceptScore W4386164037C197352329 @default.
- W4386164037 hasConceptScore W4386164037C202444582 @default.
- W4386164037 hasConceptScore W4386164037C2908647359 @default.
- W4386164037 hasConceptScore W4386164037C33923547 @default.
- W4386164037 hasConceptScore W4386164037C38652104 @default.
- W4386164037 hasConceptScore W4386164037C41008148 @default.
- W4386164037 hasConceptScore W4386164037C539469273 @default.
- W4386164037 hasConceptScore W4386164037C59822182 @default.
- W4386164037 hasConceptScore W4386164037C79403827 @default.
- W4386164037 hasConceptScore W4386164037C86803240 @default.
- W4386164037 hasConceptScore W4386164037C9652623 @default.
- W4386164037 hasLocation W43861640371 @default.
- W4386164037 hasLocation W43861640372 @default.
- W4386164037 hasOpenAccess W4386164037 @default.
- W4386164037 hasPrimaryLocation W43861640371 @default.
- W4386164037 hasRelatedWork W2093355986 @default.
- W4386164037 hasRelatedWork W2323578810 @default.
- W4386164037 hasRelatedWork W2691492924 @default.
- W4386164037 hasRelatedWork W2961085424 @default.
- W4386164037 hasRelatedWork W3110762944 @default.
- W4386164037 hasRelatedWork W3195241039 @default.
- W4386164037 hasRelatedWork W3217434375 @default.
- W4386164037 hasRelatedWork W4213322359 @default.
- W4386164037 hasRelatedWork W4303627899 @default.
- W4386164037 hasRelatedWork W4306674287 @default.