Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386172493> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4386172493 abstract "Few-shot learning is intended to address situations where there are few training samples per class. The main challenge is how to adequately extend the data or identify tighter associations from the sparse data. In this study, the final classification and data from few-shot learning are taken into account. First, we provide an efficient regularization to internal network generalization to accomplish data augmentation. Second, to enhance the Nearest Class Mean classifier (NCM) and soft K-means methods for classification, we raise a new regularized estimator based on the concept of Mahalanobis distance. We conduct extensive experiments based on CIFAR-FS and FC100. The ablation experiments show that the proposed data augmentation method is 2% higher than the baseline on CIFAR-FS(1-shot), and the classification algorithm is equally effective. The comparison experiments reveal results that much exceed the vast majority of state-of-the-art performance measures." @default.
- W4386172493 created "2023-08-26" @default.
- W4386172493 creator A5009238720 @default.
- W4386172493 creator A5051239079 @default.
- W4386172493 creator A5070046125 @default.
- W4386172493 creator A5078115214 @default.
- W4386172493 creator A5081589298 @default.
- W4386172493 creator A5090238197 @default.
- W4386172493 date "2023-07-01" @default.
- W4386172493 modified "2023-09-23" @default.
- W4386172493 title "Irecut+MM: Data Generalization and Metric Improvement for Few-shot Learning" @default.
- W4386172493 cites W2963070905 @default.
- W4386172493 cites W2963943197 @default.
- W4386172493 cites W2979689312 @default.
- W4386172493 cites W2982049331 @default.
- W4386172493 cites W2988501586 @default.
- W4386172493 cites W2992308087 @default.
- W4386172493 cites W3009081299 @default.
- W4386172493 cites W3034587791 @default.
- W4386172493 cites W3035370595 @default.
- W4386172493 cites W3111381272 @default.
- W4386172493 cites W3185613168 @default.
- W4386172493 cites W3191302135 @default.
- W4386172493 cites W3195219609 @default.
- W4386172493 cites W3203266879 @default.
- W4386172493 cites W4214608919 @default.
- W4386172493 cites W4283517970 @default.
- W4386172493 cites W4292091702 @default.
- W4386172493 doi "https://doi.org/10.1109/icme55011.2023.00495" @default.
- W4386172493 hasPublicationYear "2023" @default.
- W4386172493 type Work @default.
- W4386172493 citedByCount "0" @default.
- W4386172493 crossrefType "proceedings-article" @default.
- W4386172493 hasAuthorship W4386172493A5009238720 @default.
- W4386172493 hasAuthorship W4386172493A5051239079 @default.
- W4386172493 hasAuthorship W4386172493A5070046125 @default.
- W4386172493 hasAuthorship W4386172493A5078115214 @default.
- W4386172493 hasAuthorship W4386172493A5081589298 @default.
- W4386172493 hasAuthorship W4386172493A5090238197 @default.
- W4386172493 hasConcept C105795698 @default.
- W4386172493 hasConcept C119857082 @default.
- W4386172493 hasConcept C124101348 @default.
- W4386172493 hasConcept C127413603 @default.
- W4386172493 hasConcept C134306372 @default.
- W4386172493 hasConcept C153180895 @default.
- W4386172493 hasConcept C154945302 @default.
- W4386172493 hasConcept C162324750 @default.
- W4386172493 hasConcept C176217482 @default.
- W4386172493 hasConcept C177148314 @default.
- W4386172493 hasConcept C178790620 @default.
- W4386172493 hasConcept C185429906 @default.
- W4386172493 hasConcept C185592680 @default.
- W4386172493 hasConcept C1921717 @default.
- W4386172493 hasConcept C21547014 @default.
- W4386172493 hasConcept C2776135515 @default.
- W4386172493 hasConcept C2778344882 @default.
- W4386172493 hasConcept C2992734406 @default.
- W4386172493 hasConcept C33923547 @default.
- W4386172493 hasConcept C41008148 @default.
- W4386172493 hasConcept C78519656 @default.
- W4386172493 hasConcept C95623464 @default.
- W4386172493 hasConceptScore W4386172493C105795698 @default.
- W4386172493 hasConceptScore W4386172493C119857082 @default.
- W4386172493 hasConceptScore W4386172493C124101348 @default.
- W4386172493 hasConceptScore W4386172493C127413603 @default.
- W4386172493 hasConceptScore W4386172493C134306372 @default.
- W4386172493 hasConceptScore W4386172493C153180895 @default.
- W4386172493 hasConceptScore W4386172493C154945302 @default.
- W4386172493 hasConceptScore W4386172493C162324750 @default.
- W4386172493 hasConceptScore W4386172493C176217482 @default.
- W4386172493 hasConceptScore W4386172493C177148314 @default.
- W4386172493 hasConceptScore W4386172493C178790620 @default.
- W4386172493 hasConceptScore W4386172493C185429906 @default.
- W4386172493 hasConceptScore W4386172493C185592680 @default.
- W4386172493 hasConceptScore W4386172493C1921717 @default.
- W4386172493 hasConceptScore W4386172493C21547014 @default.
- W4386172493 hasConceptScore W4386172493C2776135515 @default.
- W4386172493 hasConceptScore W4386172493C2778344882 @default.
- W4386172493 hasConceptScore W4386172493C2992734406 @default.
- W4386172493 hasConceptScore W4386172493C33923547 @default.
- W4386172493 hasConceptScore W4386172493C41008148 @default.
- W4386172493 hasConceptScore W4386172493C78519656 @default.
- W4386172493 hasConceptScore W4386172493C95623464 @default.
- W4386172493 hasLocation W43861724931 @default.
- W4386172493 hasOpenAccess W4386172493 @default.
- W4386172493 hasPrimaryLocation W43861724931 @default.
- W4386172493 hasRelatedWork W1991269640 @default.
- W4386172493 hasRelatedWork W2167582322 @default.
- W4386172493 hasRelatedWork W2563096758 @default.
- W4386172493 hasRelatedWork W2972035100 @default.
- W4386172493 hasRelatedWork W3009888028 @default.
- W4386172493 hasRelatedWork W3044078048 @default.
- W4386172493 hasRelatedWork W4246585671 @default.
- W4386172493 hasRelatedWork W4307928143 @default.
- W4386172493 hasRelatedWork W4386053843 @default.
- W4386172493 hasRelatedWork W3158004940 @default.
- W4386172493 isParatext "false" @default.
- W4386172493 isRetracted "false" @default.
- W4386172493 workType "article" @default.