Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386175032> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4386175032 endingPage "107015" @default.
- W4386175032 startingPage "107015" @default.
- W4386175032 abstract "With progressing competitive market, different organizations were desperate to hold this churn rate as minimum value, hence to achieve this, building an effective (CCP) customer churn prediction model is essential. In order to address those issues in CCP, the study deliberated the churn prediction model using DFE-WUNB (Deep Feature Extraction with Weight Updated Tuned Naïve Bayes classifier) in a cloud-computing environment. Due to the huge non-linear features of the Telco customer churn dataset, the pre-processed features are deeply learned by the subsequent two models of ANN. In ANN, the input feature gets multiplied by the weight value, and the resultant output feature passes to the next dense layer in ANN. The deep feature extraction in ANN models facilitates precise accuracy in determining relevant churn features. However, the higher matrix dimensions of features exhibit complexity in prediction, hence this Block Jacobi SVD algorithm is applied to decrease the dimensions of features, such as to create a sparse dataset projected to get fit to the training model for efficient classification. The dimension-reduced features pass through enhanced weighing Naïve Bayes algorithm gets updated with ANN weights and tunes the parameters having greater and best weights to NB classifier, improvising the classification accuracy performance. The comparative assessment of the proposed DFE-WUNB churn prediction model delineated the efficiency of highly accurate churn prediction, outperforming other conventional churn prediction models." @default.
- W4386175032 created "2023-08-26" @default.
- W4386175032 creator A5012121815 @default.
- W4386175032 creator A5030609888 @default.
- W4386175032 date "2023-11-01" @default.
- W4386175032 modified "2023-09-25" @default.
- W4386175032 title "Customer churn prediction model in cloud environment using DFE-WUNB: ANN deep feature extraction with Weight Updated Tuned Naïve Bayes classification with Block-Jacobi SVD dimensionality reduction" @default.
- W4386175032 cites W2793003883 @default.
- W4386175032 cites W2894081075 @default.
- W4386175032 cites W2901492899 @default.
- W4386175032 cites W2901502904 @default.
- W4386175032 cites W2926105593 @default.
- W4386175032 cites W2953539043 @default.
- W4386175032 cites W2969701135 @default.
- W4386175032 cites W2995204215 @default.
- W4386175032 cites W3011401269 @default.
- W4386175032 cites W3033750289 @default.
- W4386175032 cites W3112248285 @default.
- W4386175032 cites W3116723854 @default.
- W4386175032 cites W3137488793 @default.
- W4386175032 cites W3192497121 @default.
- W4386175032 cites W3207477515 @default.
- W4386175032 cites W4206220597 @default.
- W4386175032 cites W4211189082 @default.
- W4386175032 cites W4213106870 @default.
- W4386175032 cites W4225153176 @default.
- W4386175032 cites W4226237685 @default.
- W4386175032 cites W4281662447 @default.
- W4386175032 cites W4285678623 @default.
- W4386175032 cites W4287512390 @default.
- W4386175032 cites W4293791119 @default.
- W4386175032 cites W4296400741 @default.
- W4386175032 cites W4306726700 @default.
- W4386175032 cites W4365455972 @default.
- W4386175032 doi "https://doi.org/10.1016/j.engappai.2023.107015" @default.
- W4386175032 hasPublicationYear "2023" @default.
- W4386175032 type Work @default.
- W4386175032 citedByCount "0" @default.
- W4386175032 crossrefType "journal-article" @default.
- W4386175032 hasAuthorship W4386175032A5012121815 @default.
- W4386175032 hasAuthorship W4386175032A5030609888 @default.
- W4386175032 hasConcept C111030470 @default.
- W4386175032 hasConcept C119857082 @default.
- W4386175032 hasConcept C12267149 @default.
- W4386175032 hasConcept C124101348 @default.
- W4386175032 hasConcept C153180895 @default.
- W4386175032 hasConcept C154945302 @default.
- W4386175032 hasConcept C41008148 @default.
- W4386175032 hasConcept C52001869 @default.
- W4386175032 hasConcept C52622490 @default.
- W4386175032 hasConcept C70518039 @default.
- W4386175032 hasConcept C95623464 @default.
- W4386175032 hasConceptScore W4386175032C111030470 @default.
- W4386175032 hasConceptScore W4386175032C119857082 @default.
- W4386175032 hasConceptScore W4386175032C12267149 @default.
- W4386175032 hasConceptScore W4386175032C124101348 @default.
- W4386175032 hasConceptScore W4386175032C153180895 @default.
- W4386175032 hasConceptScore W4386175032C154945302 @default.
- W4386175032 hasConceptScore W4386175032C41008148 @default.
- W4386175032 hasConceptScore W4386175032C52001869 @default.
- W4386175032 hasConceptScore W4386175032C52622490 @default.
- W4386175032 hasConceptScore W4386175032C70518039 @default.
- W4386175032 hasConceptScore W4386175032C95623464 @default.
- W4386175032 hasLocation W43861750321 @default.
- W4386175032 hasOpenAccess W4386175032 @default.
- W4386175032 hasPrimaryLocation W43861750321 @default.
- W4386175032 hasRelatedWork W1965275221 @default.
- W4386175032 hasRelatedWork W2071887232 @default.
- W4386175032 hasRelatedWork W2080241722 @default.
- W4386175032 hasRelatedWork W2097193191 @default.
- W4386175032 hasRelatedWork W2105055468 @default.
- W4386175032 hasRelatedWork W2538551403 @default.
- W4386175032 hasRelatedWork W2772780115 @default.
- W4386175032 hasRelatedWork W3207278327 @default.
- W4386175032 hasRelatedWork W4384695349 @default.
- W4386175032 hasRelatedWork W4386066044 @default.
- W4386175032 hasVolume "126" @default.
- W4386175032 isParatext "false" @default.
- W4386175032 isRetracted "false" @default.
- W4386175032 workType "article" @default.