Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386185217> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4386185217 abstract "Equalization is an important task at the receiver side of a digital wireless communication system, which is traditionally conducted with model-based estimation methods. Among the numerous options for model-based equalization, iterative soft interference cancellation (SIC) is a well-performing approach since error propagation caused by hard decision data symbol estimation during the iterative estimation procedure is avoided. However, the model-based method suffers from high computational complexity and performance degradation due to required approximations. In this work, we propose a novel neural network (NN-)based equalization approach, referred to as SICNN, which is designed by deep unfolding of a model-based iterative SIC method, eliminating the main disadvantages of its model-based counterpart. We present different variants of SICNN. SICNNv1 is very similar to the model-based method, and is specifically tailored for single carrier frequency domain equalization systems, which is the communication system we regard in this work. The second variant, SICNNv2, is more universal, and is applicable as an equalizer in any communication system with a block-based data transmission scheme. We highlight the pros and cons of both variants. Moreover, for both SICNNv1 and SICNNv2 we present a version with a highly reduced number of learnable parameters. We compare the achieved bit error ratio performance of the proposed NN-based equalizers with state-of-the-art model-based and NN-based approaches, highlighting the superiority of SICNNv1 over all other methods. Also, we present a thorough complexity analysis of the proposed NN-based equalization approaches, and we investigate the influence of the training set size on the performance of NN-based equalizers." @default.
- W4386185217 created "2023-08-26" @default.
- W4386185217 creator A5018262850 @default.
- W4386185217 creator A5031935371 @default.
- W4386185217 creator A5049116697 @default.
- W4386185217 date "2023-08-24" @default.
- W4386185217 modified "2023-09-23" @default.
- W4386185217 title "SICNN: Soft Interference Cancellation Inspired Neural Network Equalizers" @default.
- W4386185217 doi "https://doi.org/10.48550/arxiv.2308.12591" @default.
- W4386185217 hasPublicationYear "2023" @default.
- W4386185217 type Work @default.
- W4386185217 citedByCount "0" @default.
- W4386185217 crossrefType "posted-content" @default.
- W4386185217 hasAuthorship W4386185217A5018262850 @default.
- W4386185217 hasAuthorship W4386185217A5031935371 @default.
- W4386185217 hasAuthorship W4386185217A5049116697 @default.
- W4386185217 hasBestOaLocation W43861852171 @default.
- W4386185217 hasConcept C101765175 @default.
- W4386185217 hasConcept C11413529 @default.
- W4386185217 hasConcept C127162648 @default.
- W4386185217 hasConcept C154945302 @default.
- W4386185217 hasConcept C179799912 @default.
- W4386185217 hasConcept C2524010 @default.
- W4386185217 hasConcept C2777210771 @default.
- W4386185217 hasConcept C32022120 @default.
- W4386185217 hasConcept C33923547 @default.
- W4386185217 hasConcept C41008148 @default.
- W4386185217 hasConcept C50644808 @default.
- W4386185217 hasConcept C56296756 @default.
- W4386185217 hasConcept C57273362 @default.
- W4386185217 hasConcept C75755367 @default.
- W4386185217 hasConcept C76155785 @default.
- W4386185217 hasConcept C83204339 @default.
- W4386185217 hasConceptScore W4386185217C101765175 @default.
- W4386185217 hasConceptScore W4386185217C11413529 @default.
- W4386185217 hasConceptScore W4386185217C127162648 @default.
- W4386185217 hasConceptScore W4386185217C154945302 @default.
- W4386185217 hasConceptScore W4386185217C179799912 @default.
- W4386185217 hasConceptScore W4386185217C2524010 @default.
- W4386185217 hasConceptScore W4386185217C2777210771 @default.
- W4386185217 hasConceptScore W4386185217C32022120 @default.
- W4386185217 hasConceptScore W4386185217C33923547 @default.
- W4386185217 hasConceptScore W4386185217C41008148 @default.
- W4386185217 hasConceptScore W4386185217C50644808 @default.
- W4386185217 hasConceptScore W4386185217C56296756 @default.
- W4386185217 hasConceptScore W4386185217C57273362 @default.
- W4386185217 hasConceptScore W4386185217C75755367 @default.
- W4386185217 hasConceptScore W4386185217C76155785 @default.
- W4386185217 hasConceptScore W4386185217C83204339 @default.
- W4386185217 hasLocation W43861852171 @default.
- W4386185217 hasOpenAccess W4386185217 @default.
- W4386185217 hasPrimaryLocation W43861852171 @default.
- W4386185217 hasRelatedWork W2034929704 @default.
- W4386185217 hasRelatedWork W2054928427 @default.
- W4386185217 hasRelatedWork W2112135249 @default.
- W4386185217 hasRelatedWork W2131875466 @default.
- W4386185217 hasRelatedWork W2379901650 @default.
- W4386185217 hasRelatedWork W2839835245 @default.
- W4386185217 hasRelatedWork W2949557278 @default.
- W4386185217 hasRelatedWork W2962769409 @default.
- W4386185217 hasRelatedWork W4226007319 @default.
- W4386185217 hasRelatedWork W4312785377 @default.
- W4386185217 isParatext "false" @default.
- W4386185217 isRetracted "false" @default.
- W4386185217 workType "article" @default.