Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386191593> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4386191593 abstract "Machine translation has shown potential in improving access to medical information and healthcare services for multilingual patients. This research aims to enhance machine translation accuracy in the medical field, specifically for translating from Hindi to English. The study introduces a new approach that dynamically allocates decoding parameters using regression models, overcoming the limitations of fixed parameters in the decoder. A comprehensive dataset is created to address limited data availability, enabling regression models to predict optimal pruning parameters. The main motivation for the study is the introduction of a regression method for optimizing pruning parameters, which is a novel approach in this context. The proposed approach outperforms existing methods, achieving improved translation accuracy. Standard metrics such as the BLEU score are used to evaluate translations. Ensemble average and pipeline approaches further enhance performance. The improved performance of the proposed models can be attributed to the ensemble of diverse models (Extra Trees, LightGBM, XGBoost, and Random Forest) that employ various techniques to reduce overfitting, enhance prediction accuracy, and improve translation by correcting prediction errors. The study contributes to facilitating the translation and sharing of medical literature, promoting collaboration and knowledge exchange across languages. The research demonstrates the effectiveness of the regression method for optimizing pruning parameters in machine translation, leading to improved translation accuracy in the medical field. The proposed models offer promising results, paving the way for enhanced machine translation systems and promoting collaboration and knowledge exchange in the medical domain. The source code is available at https://huggingface.co/debajyoty/statistical-regression-Based-MT/tree/main/Statistical-Regression-SMT." @default.
- W4386191593 created "2023-08-27" @default.
- W4386191593 creator A5006513001 @default.
- W4386191593 creator A5037977430 @default.
- W4386191593 creator A5038111135 @default.
- W4386191593 creator A5041837552 @default.
- W4386191593 date "2023-08-26" @default.
- W4386191593 modified "2023-10-18" @default.
- W4386191593 title "Improving Access to Medical Information for Multilingual Patients using Pipelined Ensemble Average based Machine Translation" @default.
- W4386191593 cites W1498238796 @default.
- W4386191593 cites W1972648128 @default.
- W4386191593 cites W2173094809 @default.
- W4386191593 cites W2422872931 @default.
- W4386191593 cites W2906529600 @default.
- W4386191593 cites W2920359981 @default.
- W4386191593 cites W2963506925 @default.
- W4386191593 cites W2975739294 @default.
- W4386191593 cites W3004594802 @default.
- W4386191593 cites W3102476541 @default.
- W4386191593 cites W4221017237 @default.
- W4386191593 doi "https://doi.org/10.1145/3617372" @default.
- W4386191593 hasPublicationYear "2023" @default.
- W4386191593 type Work @default.
- W4386191593 citedByCount "0" @default.
- W4386191593 crossrefType "journal-article" @default.
- W4386191593 hasAuthorship W4386191593A5006513001 @default.
- W4386191593 hasAuthorship W4386191593A5037977430 @default.
- W4386191593 hasAuthorship W4386191593A5038111135 @default.
- W4386191593 hasAuthorship W4386191593A5041837552 @default.
- W4386191593 hasBestOaLocation W43861915931 @default.
- W4386191593 hasConcept C104317684 @default.
- W4386191593 hasConcept C105580179 @default.
- W4386191593 hasConcept C105795698 @default.
- W4386191593 hasConcept C108010975 @default.
- W4386191593 hasConcept C119857082 @default.
- W4386191593 hasConcept C124101348 @default.
- W4386191593 hasConcept C149364088 @default.
- W4386191593 hasConcept C151730666 @default.
- W4386191593 hasConcept C154945302 @default.
- W4386191593 hasConcept C169258074 @default.
- W4386191593 hasConcept C185592680 @default.
- W4386191593 hasConcept C199360897 @default.
- W4386191593 hasConcept C202444582 @default.
- W4386191593 hasConcept C203005215 @default.
- W4386191593 hasConcept C22019652 @default.
- W4386191593 hasConcept C2779343474 @default.
- W4386191593 hasConcept C33923547 @default.
- W4386191593 hasConcept C41008148 @default.
- W4386191593 hasConcept C43521106 @default.
- W4386191593 hasConcept C45942800 @default.
- W4386191593 hasConcept C50644808 @default.
- W4386191593 hasConcept C55493867 @default.
- W4386191593 hasConcept C6557445 @default.
- W4386191593 hasConcept C83546350 @default.
- W4386191593 hasConcept C86803240 @default.
- W4386191593 hasConcept C9652623 @default.
- W4386191593 hasConceptScore W4386191593C104317684 @default.
- W4386191593 hasConceptScore W4386191593C105580179 @default.
- W4386191593 hasConceptScore W4386191593C105795698 @default.
- W4386191593 hasConceptScore W4386191593C108010975 @default.
- W4386191593 hasConceptScore W4386191593C119857082 @default.
- W4386191593 hasConceptScore W4386191593C124101348 @default.
- W4386191593 hasConceptScore W4386191593C149364088 @default.
- W4386191593 hasConceptScore W4386191593C151730666 @default.
- W4386191593 hasConceptScore W4386191593C154945302 @default.
- W4386191593 hasConceptScore W4386191593C169258074 @default.
- W4386191593 hasConceptScore W4386191593C185592680 @default.
- W4386191593 hasConceptScore W4386191593C199360897 @default.
- W4386191593 hasConceptScore W4386191593C202444582 @default.
- W4386191593 hasConceptScore W4386191593C203005215 @default.
- W4386191593 hasConceptScore W4386191593C22019652 @default.
- W4386191593 hasConceptScore W4386191593C2779343474 @default.
- W4386191593 hasConceptScore W4386191593C33923547 @default.
- W4386191593 hasConceptScore W4386191593C41008148 @default.
- W4386191593 hasConceptScore W4386191593C43521106 @default.
- W4386191593 hasConceptScore W4386191593C45942800 @default.
- W4386191593 hasConceptScore W4386191593C50644808 @default.
- W4386191593 hasConceptScore W4386191593C55493867 @default.
- W4386191593 hasConceptScore W4386191593C6557445 @default.
- W4386191593 hasConceptScore W4386191593C83546350 @default.
- W4386191593 hasConceptScore W4386191593C86803240 @default.
- W4386191593 hasConceptScore W4386191593C9652623 @default.
- W4386191593 hasLocation W43861915931 @default.
- W4386191593 hasOpenAccess W4386191593 @default.
- W4386191593 hasPrimaryLocation W43861915931 @default.
- W4386191593 hasRelatedWork W2989932438 @default.
- W4386191593 hasRelatedWork W3090368157 @default.
- W4386191593 hasRelatedWork W4206206562 @default.
- W4386191593 hasRelatedWork W4281560664 @default.
- W4386191593 hasRelatedWork W4313622669 @default.
- W4386191593 hasRelatedWork W4318350883 @default.
- W4386191593 hasRelatedWork W4321499019 @default.
- W4386191593 hasRelatedWork W4375930479 @default.
- W4386191593 hasRelatedWork W4383619952 @default.
- W4386191593 hasRelatedWork W4383755537 @default.
- W4386191593 isParatext "false" @default.
- W4386191593 isRetracted "false" @default.
- W4386191593 workType "article" @default.