Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386194718> ?p ?o ?g. }
- W4386194718 abstract "Gabor filter is widely used to extract spatial texture features of hyperspectral images (HSI) for HSI classification; however, a single Gabor filter cannot obtain the complete image features. In the paper, we propose an HSI classification method that combines the Gabor filter (GF) and domain-transformation standard convolution (DTNC) filter. First, we use the Gabor filter to extract spatial texture features from the first two principal components of the dimensionality-reduction HSI with PCA. Second, we use the DTNC filter to extract spatial correlation features from HSI in all bands. Finally, the Large Margin Distribution Machine (LDM) uses the linear fusion of the two kinds of spatial features to classify HSI. The experimental results show that the classification accuracy of Indian Pines, Pavia University, and Kennedy Space Center data sets is 96.64, 98.23, and 98.95% with only 4, 3, and 6% training samples, respectively; and these accuracies are 2–20% higher than the other tested methods. Compared with the hyperspectral information based on SVM, EPF, IFRF, PCA-EPFs, LDM-FL, and GFDN method, the proposed method, GFDTNCLDM, significantly improves the accuracy of HSI classification." @default.
- W4386194718 created "2023-08-27" @default.
- W4386194718 creator A5007111950 @default.
- W4386194718 creator A5018184772 @default.
- W4386194718 creator A5053146359 @default.
- W4386194718 date "2023-01-02" @default.
- W4386194718 modified "2023-09-25" @default.
- W4386194718 title "Hyperspectral Image Classification Based on the Gabor Feature with Correlation Information" @default.
- W4386194718 cites W1967649788 @default.
- W4386194718 cites W1987844198 @default.
- W4386194718 cites W2017776670 @default.
- W4386194718 cites W2018482939 @default.
- W4386194718 cites W2061096125 @default.
- W4386194718 cites W2092745549 @default.
- W4386194718 cites W2125188192 @default.
- W4386194718 cites W2144966944 @default.
- W4386194718 cites W2151665594 @default.
- W4386194718 cites W2155146657 @default.
- W4386194718 cites W2163346236 @default.
- W4386194718 cites W2166923144 @default.
- W4386194718 cites W2322599490 @default.
- W4386194718 cites W2342652911 @default.
- W4386194718 cites W2346155541 @default.
- W4386194718 cites W2529401893 @default.
- W4386194718 cites W2534939801 @default.
- W4386194718 cites W2558098092 @default.
- W4386194718 cites W2564695825 @default.
- W4386194718 cites W2598997103 @default.
- W4386194718 cites W2754507318 @default.
- W4386194718 cites W2768309288 @default.
- W4386194718 cites W2794633256 @default.
- W4386194718 cites W2801400875 @default.
- W4386194718 cites W2921666890 @default.
- W4386194718 cites W2933416644 @default.
- W4386194718 cites W2982506590 @default.
- W4386194718 cites W3007777078 @default.
- W4386194718 cites W3024456214 @default.
- W4386194718 cites W3036014187 @default.
- W4386194718 cites W3047358975 @default.
- W4386194718 cites W3119855172 @default.
- W4386194718 cites W3127225435 @default.
- W4386194718 cites W3127230150 @default.
- W4386194718 cites W3135052513 @default.
- W4386194718 cites W3145049705 @default.
- W4386194718 cites W3158561636 @default.
- W4386194718 cites W3192524834 @default.
- W4386194718 cites W3198812651 @default.
- W4386194718 cites W3199303234 @default.
- W4386194718 cites W3202179271 @default.
- W4386194718 cites W3216697720 @default.
- W4386194718 cites W3217526930 @default.
- W4386194718 cites W4211264314 @default.
- W4386194718 cites W4224318486 @default.
- W4386194718 cites W4245406319 @default.
- W4386194718 cites W4292265241 @default.
- W4386194718 cites W4292309754 @default.
- W4386194718 cites W4309708533 @default.
- W4386194718 cites W783096245 @default.
- W4386194718 doi "https://doi.org/10.1080/07038992.2023.2246158" @default.
- W4386194718 hasPublicationYear "2023" @default.
- W4386194718 type Work @default.
- W4386194718 citedByCount "0" @default.
- W4386194718 crossrefType "journal-article" @default.
- W4386194718 hasAuthorship W4386194718A5007111950 @default.
- W4386194718 hasAuthorship W4386194718A5018184772 @default.
- W4386194718 hasAuthorship W4386194718A5053146359 @default.
- W4386194718 hasBestOaLocation W43861947181 @default.
- W4386194718 hasConcept C106131492 @default.
- W4386194718 hasConcept C138885662 @default.
- W4386194718 hasConcept C153180895 @default.
- W4386194718 hasConcept C154945302 @default.
- W4386194718 hasConcept C159078339 @default.
- W4386194718 hasConcept C27438332 @default.
- W4386194718 hasConcept C2776401178 @default.
- W4386194718 hasConcept C2779883129 @default.
- W4386194718 hasConcept C31972630 @default.
- W4386194718 hasConcept C33923547 @default.
- W4386194718 hasConcept C41008148 @default.
- W4386194718 hasConcept C41895202 @default.
- W4386194718 hasConcept C52622490 @default.
- W4386194718 hasConcept C70518039 @default.
- W4386194718 hasConcept C83665646 @default.
- W4386194718 hasConceptScore W4386194718C106131492 @default.
- W4386194718 hasConceptScore W4386194718C138885662 @default.
- W4386194718 hasConceptScore W4386194718C153180895 @default.
- W4386194718 hasConceptScore W4386194718C154945302 @default.
- W4386194718 hasConceptScore W4386194718C159078339 @default.
- W4386194718 hasConceptScore W4386194718C27438332 @default.
- W4386194718 hasConceptScore W4386194718C2776401178 @default.
- W4386194718 hasConceptScore W4386194718C2779883129 @default.
- W4386194718 hasConceptScore W4386194718C31972630 @default.
- W4386194718 hasConceptScore W4386194718C33923547 @default.
- W4386194718 hasConceptScore W4386194718C41008148 @default.
- W4386194718 hasConceptScore W4386194718C41895202 @default.
- W4386194718 hasConceptScore W4386194718C52622490 @default.
- W4386194718 hasConceptScore W4386194718C70518039 @default.
- W4386194718 hasConceptScore W4386194718C83665646 @default.
- W4386194718 hasFunder F4320321001 @default.
- W4386194718 hasFunder F4320321921 @default.
- W4386194718 hasIssue "1" @default.