Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386197533> ?p ?o ?g. }
- W4386197533 endingPage "115417" @default.
- W4386197533 startingPage "115417" @default.
- W4386197533 abstract "This study explored the potential for predicting the quantities of microplastics (MPs) from easily measurable parameters in peatland sediment samples. We first applied correlation and Bayesian network analysis to examine the associations between physicochemical variables and the number of MPs measured from three districts of the Long An province in Vietnam. Further, we trained and tested three machine learning models, namely Least-Square Support Vector Machines (LS-SVM), Random Forest (RF), and Long Short-Term Memory (LSTM) to predict the composite quantities of MPs using physicochemical parameters and sediment characteristics as predictors. The results indicate that the quantity of MPs and characteristics such as color and shape in the samples were mostly influenced by pH, TOC, and salinity. All three predictive models demonstrated considerable accuracies when applied to the testing dataset. This study lays the groundwork for using basic physicochemical variables to predict MP pollution in peatland sediments and potentially locations and environments." @default.
- W4386197533 created "2023-08-27" @default.
- W4386197533 creator A5015962281 @default.
- W4386197533 creator A5018935783 @default.
- W4386197533 creator A5023064512 @default.
- W4386197533 creator A5032091221 @default.
- W4386197533 creator A5047118260 @default.
- W4386197533 creator A5061262545 @default.
- W4386197533 creator A5066150460 @default.
- W4386197533 date "2023-09-01" @default.
- W4386197533 modified "2023-09-23" @default.
- W4386197533 title "Machine learning approaches for predicting microplastic pollution in peatland areas" @default.
- W4386197533 cites W1596717185 @default.
- W4386197533 cites W2031024981 @default.
- W4386197533 cites W2031235730 @default.
- W4386197533 cites W2064675550 @default.
- W4386197533 cites W2069700706 @default.
- W4386197533 cites W2076442087 @default.
- W4386197533 cites W2084694171 @default.
- W4386197533 cites W2549962583 @default.
- W4386197533 cites W2562388961 @default.
- W4386197533 cites W2565917501 @default.
- W4386197533 cites W2770637472 @default.
- W4386197533 cites W2792277382 @default.
- W4386197533 cites W2803177976 @default.
- W4386197533 cites W2889579625 @default.
- W4386197533 cites W2907646067 @default.
- W4386197533 cites W2911964244 @default.
- W4386197533 cites W2913323966 @default.
- W4386197533 cites W2977747666 @default.
- W4386197533 cites W2983689288 @default.
- W4386197533 cites W2991306453 @default.
- W4386197533 cites W2995670746 @default.
- W4386197533 cites W3004021644 @default.
- W4386197533 cites W3036614177 @default.
- W4386197533 cites W3039960374 @default.
- W4386197533 cites W3043338943 @default.
- W4386197533 cites W3082394119 @default.
- W4386197533 cites W3095835601 @default.
- W4386197533 cites W3159951558 @default.
- W4386197533 cites W4214901409 @default.
- W4386197533 cites W4281249584 @default.
- W4386197533 cites W4283746675 @default.
- W4386197533 cites W4295950998 @default.
- W4386197533 cites W4313314697 @default.
- W4386197533 cites W4383616451 @default.
- W4386197533 cites W4384197192 @default.
- W4386197533 cites W836867855 @default.
- W4386197533 doi "https://doi.org/10.1016/j.marpolbul.2023.115417" @default.
- W4386197533 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37639864" @default.
- W4386197533 hasPublicationYear "2023" @default.
- W4386197533 type Work @default.
- W4386197533 citedByCount "0" @default.
- W4386197533 crossrefType "journal-article" @default.
- W4386197533 hasAuthorship W4386197533A5015962281 @default.
- W4386197533 hasAuthorship W4386197533A5018935783 @default.
- W4386197533 hasAuthorship W4386197533A5023064512 @default.
- W4386197533 hasAuthorship W4386197533A5032091221 @default.
- W4386197533 hasAuthorship W4386197533A5047118260 @default.
- W4386197533 hasAuthorship W4386197533A5061262545 @default.
- W4386197533 hasAuthorship W4386197533A5066150460 @default.
- W4386197533 hasConcept C107872376 @default.
- W4386197533 hasConcept C119857082 @default.
- W4386197533 hasConcept C12267149 @default.
- W4386197533 hasConcept C127313418 @default.
- W4386197533 hasConcept C151730666 @default.
- W4386197533 hasConcept C159390177 @default.
- W4386197533 hasConcept C169258074 @default.
- W4386197533 hasConcept C185592680 @default.
- W4386197533 hasConcept C18903297 @default.
- W4386197533 hasConcept C2780401329 @default.
- W4386197533 hasConcept C2816523 @default.
- W4386197533 hasConcept C33724603 @default.
- W4386197533 hasConcept C39432304 @default.
- W4386197533 hasConcept C41008148 @default.
- W4386197533 hasConcept C45804977 @default.
- W4386197533 hasConcept C52001869 @default.
- W4386197533 hasConcept C521259446 @default.
- W4386197533 hasConcept C53657456 @default.
- W4386197533 hasConcept C86803240 @default.
- W4386197533 hasConceptScore W4386197533C107872376 @default.
- W4386197533 hasConceptScore W4386197533C119857082 @default.
- W4386197533 hasConceptScore W4386197533C12267149 @default.
- W4386197533 hasConceptScore W4386197533C127313418 @default.
- W4386197533 hasConceptScore W4386197533C151730666 @default.
- W4386197533 hasConceptScore W4386197533C159390177 @default.
- W4386197533 hasConceptScore W4386197533C169258074 @default.
- W4386197533 hasConceptScore W4386197533C185592680 @default.
- W4386197533 hasConceptScore W4386197533C18903297 @default.
- W4386197533 hasConceptScore W4386197533C2780401329 @default.
- W4386197533 hasConceptScore W4386197533C2816523 @default.
- W4386197533 hasConceptScore W4386197533C33724603 @default.
- W4386197533 hasConceptScore W4386197533C39432304 @default.
- W4386197533 hasConceptScore W4386197533C41008148 @default.
- W4386197533 hasConceptScore W4386197533C45804977 @default.
- W4386197533 hasConceptScore W4386197533C52001869 @default.
- W4386197533 hasConceptScore W4386197533C521259446 @default.
- W4386197533 hasConceptScore W4386197533C53657456 @default.