Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386201322> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4386201322 abstract "<div class=section abstract><div class=htmlview paragraph>This article presents a novel approach for predicting fuel consumption in vehicles through a recurrent neural network (RNN) that uses only speed, acceleration, and road slope as input data. The model has been developed for real-time vehicle monitoring, route planning optimization, cost and emissions reduction and it is suitable for fleet-management purposes. To train and test the RNN, chosen after addressing several structures, experimental data have been measured on-board of a heavy-duty truck representative of a heavy-duty transportation company. Data have been acquired during typical daily missions, making use of an advanced connectivity platform, which features CANbus vehicle connection, GPS tracking, 4G/LTE - 5G connectivity, along with on-board data processing. The experimental data used for RNN train and test have been treated starting from on-board acquired raw data (e.g., speed, acceleration, fuel consumption, etc.) along with road slope downloaded from map providers. The improvement of the network performance has been achieved through a weight pruning procedure, to minimize instabilities and error amplification during fuel consumption prediction. RNN training has been performed using only one scheduled mission for both vehicles, but to distinct models (i.e., one for the bus and one for the truck) has been designed and tested on various routes, showing high accuracy in fuel consumption estimation. The achieved results proved RNN being capable of improving fuel consumption prediction on simulated routes, utilizing only few inputs, to support fleet operations in advanced route planning, with lower operating expenses and therefore reduced pollutant emissions.</div></div>" @default.
- W4386201322 created "2023-08-28" @default.
- W4386201322 creator A5003080194 @default.
- W4386201322 creator A5020686284 @default.
- W4386201322 creator A5067115371 @default.
- W4386201322 creator A5080670556 @default.
- W4386201322 date "2023-08-28" @default.
- W4386201322 modified "2023-09-24" @default.
- W4386201322 title "Real-Time Prediction of Fuel Consumption via Recurrent Neural Network (RNN) for Monitoring, Route Planning Optimization and CO2 Reduction of Heavy-Duty Vehicles" @default.
- W4386201322 cites W1966218556 @default.
- W4386201322 cites W1966447062 @default.
- W4386201322 cites W1974017210 @default.
- W4386201322 cites W2059174629 @default.
- W4386201322 cites W2059511440 @default.
- W4386201322 cites W2088579613 @default.
- W4386201322 cites W2140903985 @default.
- W4386201322 cites W2221914010 @default.
- W4386201322 cites W2508316991 @default.
- W4386201322 cites W2533662813 @default.
- W4386201322 cites W2769912097 @default.
- W4386201322 cites W2774872268 @default.
- W4386201322 cites W2775283290 @default.
- W4386201322 cites W2892013249 @default.
- W4386201322 cites W2916183847 @default.
- W4386201322 cites W2944265918 @default.
- W4386201322 cites W2997659653 @default.
- W4386201322 cites W2999007804 @default.
- W4386201322 cites W3048631834 @default.
- W4386201322 cites W3135672429 @default.
- W4386201322 cites W3195497970 @default.
- W4386201322 cites W4205359437 @default.
- W4386201322 cites W4310839572 @default.
- W4386201322 cites W4320919227 @default.
- W4386201322 cites W4362506937 @default.
- W4386201322 doi "https://doi.org/10.4271/2023-24-0175" @default.
- W4386201322 hasPublicationYear "2023" @default.
- W4386201322 type Work @default.
- W4386201322 citedByCount "0" @default.
- W4386201322 crossrefType "proceedings-article" @default.
- W4386201322 hasAuthorship W4386201322A5003080194 @default.
- W4386201322 hasAuthorship W4386201322A5020686284 @default.
- W4386201322 hasAuthorship W4386201322A5067115371 @default.
- W4386201322 hasAuthorship W4386201322A5080670556 @default.
- W4386201322 hasConcept C111335779 @default.
- W4386201322 hasConcept C117896860 @default.
- W4386201322 hasConcept C121332964 @default.
- W4386201322 hasConcept C127413603 @default.
- W4386201322 hasConcept C147168706 @default.
- W4386201322 hasConcept C154945302 @default.
- W4386201322 hasConcept C171146098 @default.
- W4386201322 hasConcept C2524010 @default.
- W4386201322 hasConcept C33923547 @default.
- W4386201322 hasConcept C41008148 @default.
- W4386201322 hasConcept C45882903 @default.
- W4386201322 hasConcept C50644808 @default.
- W4386201322 hasConcept C52121051 @default.
- W4386201322 hasConcept C74650414 @default.
- W4386201322 hasConcept C79403827 @default.
- W4386201322 hasConceptScore W4386201322C111335779 @default.
- W4386201322 hasConceptScore W4386201322C117896860 @default.
- W4386201322 hasConceptScore W4386201322C121332964 @default.
- W4386201322 hasConceptScore W4386201322C127413603 @default.
- W4386201322 hasConceptScore W4386201322C147168706 @default.
- W4386201322 hasConceptScore W4386201322C154945302 @default.
- W4386201322 hasConceptScore W4386201322C171146098 @default.
- W4386201322 hasConceptScore W4386201322C2524010 @default.
- W4386201322 hasConceptScore W4386201322C33923547 @default.
- W4386201322 hasConceptScore W4386201322C41008148 @default.
- W4386201322 hasConceptScore W4386201322C45882903 @default.
- W4386201322 hasConceptScore W4386201322C50644808 @default.
- W4386201322 hasConceptScore W4386201322C52121051 @default.
- W4386201322 hasConceptScore W4386201322C74650414 @default.
- W4386201322 hasConceptScore W4386201322C79403827 @default.
- W4386201322 hasLocation W43862013221 @default.
- W4386201322 hasOpenAccess W4386201322 @default.
- W4386201322 hasPrimaryLocation W43862013221 @default.
- W4386201322 hasRelatedWork W1481642222 @default.
- W4386201322 hasRelatedWork W2052859319 @default.
- W4386201322 hasRelatedWork W2154241404 @default.
- W4386201322 hasRelatedWork W2214826987 @default.
- W4386201322 hasRelatedWork W2245246024 @default.
- W4386201322 hasRelatedWork W2349045494 @default.
- W4386201322 hasRelatedWork W2381382092 @default.
- W4386201322 hasRelatedWork W2394755163 @default.
- W4386201322 hasRelatedWork W625155985 @default.
- W4386201322 hasRelatedWork W1520513531 @default.
- W4386201322 isParatext "false" @default.
- W4386201322 isRetracted "false" @default.
- W4386201322 workType "article" @default.