Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386201595> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4386201595 abstract "<div class=section abstract><div class=htmlview paragraph>Calibration of automotive engines to ensure compliance with emission regulations is a critical phase in product development. Control of engine-out particulate emissions, which directly impact the environment and public health, is particularly important. Detailed physics-based models are typically used to gain a rich understanding of the complex physical phenomena that drive the soot particle formation in an engine cylinder. However, such models often fail to correctly represent the highly dynamic nature of the underlying mechanisms under transient combustion conditions. Moreover, most physics-based models were initially developed for diesel engine applications and their applicability to gasoline engines remains questionable due to differences in flame structure and fuel-wall interactions. Black-box models have been previously proposed to predict engine-out soot emissions, but their lack of physical interpretability is an unsolved drawback. To address these limitations, we present a physics-aware twin-model machine learning framework to predict and analyze engine-out soot mass from a gasoline direct injection (GDI) engine. The framework combines a physics-based model with a bagging-type ensemble learning model that both maintains high accuracy and allows physical interpretation of results without using computationally intensive high-fidelity models. This work shows why a one-model-fits-all approach fails in the case of predicting soot emissions due to clustered co-occurrences of operating conditions that cause non-compliant behavior. We compare the performance of the proposed framework with that of the standalone baseline model and a feed-forward deep neural network. Using WLTP data from a 2.0L naturally aspirated GDI engine, the proposed framework predicts engine-out soot mass with an improvement of 29% in the R<sup>2</sup> value and 21% in the root mean squared error from the baseline physics-based model, without compromising physical interpretability. These improvements are significant enough to warrant further framework development with additional engine datasets.</div></div>" @default.
- W4386201595 created "2023-08-28" @default.
- W4386201595 creator A5019709935 @default.
- W4386201595 creator A5026286970 @default.
- W4386201595 creator A5034090257 @default.
- W4386201595 date "2023-08-28" @default.
- W4386201595 modified "2023-09-24" @default.
- W4386201595 title "Initial Development of a Physics-Aware Machine Learning Framework for Soot Mass Prediction in Gasoline Direct Injection Engines" @default.
- W4386201595 cites W1983859748 @default.
- W4386201595 cites W1986620304 @default.
- W4386201595 cites W1988195734 @default.
- W4386201595 cites W2002612361 @default.
- W4386201595 cites W2045776090 @default.
- W4386201595 cites W2058243765 @default.
- W4386201595 cites W2070486645 @default.
- W4386201595 cites W2087955244 @default.
- W4386201595 cites W2156902602 @default.
- W4386201595 cites W2540508647 @default.
- W4386201595 cites W2580170207 @default.
- W4386201595 cites W2731672539 @default.
- W4386201595 cites W2805510701 @default.
- W4386201595 cites W2892318742 @default.
- W4386201595 cites W2981731882 @default.
- W4386201595 cites W3008003211 @default.
- W4386201595 cites W3032545382 @default.
- W4386201595 cites W3155587984 @default.
- W4386201595 cites W4206390854 @default.
- W4386201595 cites W4220949976 @default.
- W4386201595 cites W4230300234 @default.
- W4386201595 cites W4230314380 @default.
- W4386201595 cites W4311531560 @default.
- W4386201595 cites W4377007174 @default.
- W4386201595 doi "https://doi.org/10.4271/2023-24-0174" @default.
- W4386201595 hasPublicationYear "2023" @default.
- W4386201595 type Work @default.
- W4386201595 citedByCount "0" @default.
- W4386201595 crossrefType "proceedings-article" @default.
- W4386201595 hasAuthorship W4386201595A5019709935 @default.
- W4386201595 hasAuthorship W4386201595A5026286970 @default.
- W4386201595 hasAuthorship W4386201595A5034090257 @default.
- W4386201595 hasConcept C105923489 @default.
- W4386201595 hasConcept C127413603 @default.
- W4386201595 hasConcept C146978453 @default.
- W4386201595 hasConcept C171146098 @default.
- W4386201595 hasConcept C178790620 @default.
- W4386201595 hasConcept C185592680 @default.
- W4386201595 hasConcept C190390380 @default.
- W4386201595 hasConcept C2775925408 @default.
- W4386201595 hasConcept C2778956030 @default.
- W4386201595 hasConcept C39573554 @default.
- W4386201595 hasConcept C41008148 @default.
- W4386201595 hasConcept C44154836 @default.
- W4386201595 hasConcept C511840579 @default.
- W4386201595 hasConcept C526921623 @default.
- W4386201595 hasConceptScore W4386201595C105923489 @default.
- W4386201595 hasConceptScore W4386201595C127413603 @default.
- W4386201595 hasConceptScore W4386201595C146978453 @default.
- W4386201595 hasConceptScore W4386201595C171146098 @default.
- W4386201595 hasConceptScore W4386201595C178790620 @default.
- W4386201595 hasConceptScore W4386201595C185592680 @default.
- W4386201595 hasConceptScore W4386201595C190390380 @default.
- W4386201595 hasConceptScore W4386201595C2775925408 @default.
- W4386201595 hasConceptScore W4386201595C2778956030 @default.
- W4386201595 hasConceptScore W4386201595C39573554 @default.
- W4386201595 hasConceptScore W4386201595C41008148 @default.
- W4386201595 hasConceptScore W4386201595C44154836 @default.
- W4386201595 hasConceptScore W4386201595C511840579 @default.
- W4386201595 hasConceptScore W4386201595C526921623 @default.
- W4386201595 hasLocation W43862015951 @default.
- W4386201595 hasOpenAccess W4386201595 @default.
- W4386201595 hasPrimaryLocation W43862015951 @default.
- W4386201595 hasRelatedWork W1538841733 @default.
- W4386201595 hasRelatedWork W2277275583 @default.
- W4386201595 hasRelatedWork W2350480724 @default.
- W4386201595 hasRelatedWork W2353520195 @default.
- W4386201595 hasRelatedWork W2366713137 @default.
- W4386201595 hasRelatedWork W2384487321 @default.
- W4386201595 hasRelatedWork W2468824180 @default.
- W4386201595 hasRelatedWork W3135636308 @default.
- W4386201595 hasRelatedWork W4213210620 @default.
- W4386201595 hasRelatedWork W2180885927 @default.
- W4386201595 isParatext "false" @default.
- W4386201595 isRetracted "false" @default.
- W4386201595 workType "article" @default.