Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386203797> ?p ?o ?g. }
- W4386203797 abstract "<sec> <title>BACKGROUND</title> Artificial intelligence (AI)-powered digital therapies which detect meth cravings delivered on consumer devices have the potential to reduce these disparities by providing remote and accessible care solutions to Native Hawaiians, Filipinos, and Pacific Islanders (NHFPI) communities with limited care solutions. However, NHFPI are fully understudied with respect to digital therapeutics and AI health sensing despite using technology at the same rates as other races. </sec> <sec> <title>OBJECTIVE</title> We seek to fulfill two research aims: (1) Understand the feasibility of continuous remote digital monitoring and ecological momentary assessments (EMAs) in NHFPI in Hawaii by curating a novel dataset of longitudinal FitBit biosignals with corresponding craving and substance use labels. (2) Develop personalized AI models which predict meth craving events in real time using wearable sensor data. </sec> <sec> <title>METHODS</title> We will develop personalized AI/ML (artificial intelligence/machine learning) models for meth use and craving prediction in 40 NHFPI individuals by curating a novel dataset of real-time FitBit biosensor readings and corresponding participant annotations (i.e., raw self-reported substance use data) of their meth use and cravings. In the process of collecting this dataset, we will glean insights about cultural and other human factors which can challenge the proper acquisition of precise annotations. With the resulting dataset, we will employ self-supervised learning (SSL) AI approaches, which are a new family of ML methods that allow a neural network to be trained without labels by being optimized to make predictions about the data itself. The inputs to the proposed AI models are FitBit biosensor readings and the outputs are predictions of meth use or craving. This paradigm is gaining increased attention in AI for healthcare. </sec> <sec> <title>RESULTS</title> This protocol was approved by the University of Hawaii Institutional Review Board (IRB) under protocol #2022-01030. Additionally, this study has received further scrutiny and approval via the University of Hawaii’s Data Governance Process under request #230410-3. </sec> <sec> <title>CONCLUSIONS</title> We expect to develop models which significantly outperform traditional supervised methods by fine-tuning to an individual subject’s data. Such methods will enable AI solutions which work with the limited data available from NHFPI populations and which are inherently unbiased due to their personalized nature. Such models can support future AI-powered digital therapeutics for substance abuse. </sec>" @default.
- W4386203797 created "2023-08-28" @default.
- W4386203797 creator A5037490912 @default.
- W4386203797 date "2023-08-25" @default.
- W4386203797 modified "2023-09-24" @default.
- W4386203797 title "Personalized Machine Learning using Passive Sensing and Ecological Momentary Assessments for Meth Users in Hawaii: A Research Protocol (Preprint)" @default.
- W4386203797 cites W1566305787 @default.
- W4386203797 cites W1619117638 @default.
- W4386203797 cites W2016148716 @default.
- W4386203797 cites W2056499831 @default.
- W4386203797 cites W2062651209 @default.
- W4386203797 cites W2125336942 @default.
- W4386203797 cites W2135874502 @default.
- W4386203797 cites W2161897659 @default.
- W4386203797 cites W2346192938 @default.
- W4386203797 cites W2516086211 @default.
- W4386203797 cites W2520832898 @default.
- W4386203797 cites W2582973553 @default.
- W4386203797 cites W2592711790 @default.
- W4386203797 cites W2601018405 @default.
- W4386203797 cites W2754840069 @default.
- W4386203797 cites W2788815240 @default.
- W4386203797 cites W2794073325 @default.
- W4386203797 cites W2794997027 @default.
- W4386203797 cites W2809187403 @default.
- W4386203797 cites W2884062515 @default.
- W4386203797 cites W2884718929 @default.
- W4386203797 cites W2885015237 @default.
- W4386203797 cites W2886286848 @default.
- W4386203797 cites W2894548131 @default.
- W4386203797 cites W2896835644 @default.
- W4386203797 cites W2897280976 @default.
- W4386203797 cites W2925256473 @default.
- W4386203797 cites W2946726116 @default.
- W4386203797 cites W2947028146 @default.
- W4386203797 cites W2953771225 @default.
- W4386203797 cites W2957768800 @default.
- W4386203797 cites W2968095426 @default.
- W4386203797 cites W2990718799 @default.
- W4386203797 cites W2995210729 @default.
- W4386203797 cites W3008947750 @default.
- W4386203797 cites W3010584756 @default.
- W4386203797 cites W3049133469 @default.
- W4386203797 cites W3081367316 @default.
- W4386203797 cites W3101667008 @default.
- W4386203797 cites W3124819461 @default.
- W4386203797 cites W3162804046 @default.
- W4386203797 cites W3173422420 @default.
- W4386203797 cites W3173809883 @default.
- W4386203797 cites W3199098260 @default.
- W4386203797 cites W3200967367 @default.
- W4386203797 cites W3201190151 @default.
- W4386203797 cites W3212650557 @default.
- W4386203797 cites W4200150286 @default.
- W4386203797 cites W4205785225 @default.
- W4386203797 cites W4206292434 @default.
- W4386203797 cites W4206324549 @default.
- W4386203797 cites W4212799943 @default.
- W4386203797 cites W4226474215 @default.
- W4386203797 cites W4281655592 @default.
- W4386203797 cites W4285494049 @default.
- W4386203797 cites W4291023040 @default.
- W4386203797 cites W4291632994 @default.
- W4386203797 cites W4296027312 @default.
- W4386203797 cites W4296079459 @default.
- W4386203797 cites W4299542032 @default.
- W4386203797 doi "https://doi.org/10.2196/preprints.46493" @default.
- W4386203797 hasPublicationYear "2023" @default.
- W4386203797 type Work @default.
- W4386203797 citedByCount "0" @default.
- W4386203797 crossrefType "posted-content" @default.
- W4386203797 hasAuthorship W4386203797A5037490912 @default.
- W4386203797 hasConcept C108583219 @default.
- W4386203797 hasConcept C118552586 @default.
- W4386203797 hasConcept C119857082 @default.
- W4386203797 hasConcept C136764020 @default.
- W4386203797 hasConcept C142724271 @default.
- W4386203797 hasConcept C149635348 @default.
- W4386203797 hasConcept C150594956 @default.
- W4386203797 hasConcept C154945302 @default.
- W4386203797 hasConcept C204787440 @default.
- W4386203797 hasConcept C2779541405 @default.
- W4386203797 hasConcept C2780385302 @default.
- W4386203797 hasConcept C29794715 @default.
- W4386203797 hasConcept C41008148 @default.
- W4386203797 hasConcept C43169469 @default.
- W4386203797 hasConcept C48856860 @default.
- W4386203797 hasConcept C71924100 @default.
- W4386203797 hasConceptScore W4386203797C108583219 @default.
- W4386203797 hasConceptScore W4386203797C118552586 @default.
- W4386203797 hasConceptScore W4386203797C119857082 @default.
- W4386203797 hasConceptScore W4386203797C136764020 @default.
- W4386203797 hasConceptScore W4386203797C142724271 @default.
- W4386203797 hasConceptScore W4386203797C149635348 @default.
- W4386203797 hasConceptScore W4386203797C150594956 @default.
- W4386203797 hasConceptScore W4386203797C154945302 @default.
- W4386203797 hasConceptScore W4386203797C204787440 @default.
- W4386203797 hasConceptScore W4386203797C2779541405 @default.
- W4386203797 hasConceptScore W4386203797C2780385302 @default.
- W4386203797 hasConceptScore W4386203797C29794715 @default.