Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386205517> ?p ?o ?g. }
- W4386205517 endingPage "103749" @default.
- W4386205517 startingPage "103749" @default.
- W4386205517 abstract "Continued increases in global population and rising living standards in many countries are driving a surge in demand for energy and protein-rich foods. Wheat, barley, and canola are important crops that are grown and traded globally. However, climate change, geopolitical tensions and competition from other crops threaten the ability to satisfy global demand. Accurate predictions of crop production and its spatial variation can play a significant role in their reliable and efficient production, marketing, and distribution. This review examined recently published models and data used to predict wheat, barley, and canola yield to identify which factors produced the best yield predictions. A literature search was conducted across the Scopus, EBSCOhost and Web of Science databases over seven years between 2015 and 2021. Data extracted from the papers identified by the literature search were investigated using graphical and quantitative analytical techniques to determine if the type of algorithm, input data, prediction timing, output scale or extent and climate variability both in isolation and in combination affected the model's predictive ability. The literature search produced 11,908 results which was reduced to 118 papers after applying the review criteria (peer reviewed papers focussed on models predicting yield at greater than plot scale across extensive areas using accessible data). China produced almost one third of all yield prediction models over the study period and 87% of models were used to predict wheat yield. Statistical models were the most common algorithm in most regions and in total. However, there was a surge in machine learning models after 2018. They were the most common model from 2019 to 2021, with one third developed in China. The review concluded that only the choice of modelling technique and the input data had a significant effect on model performance with the machine learning techniques Random Forest, Boosting algorithms and Deep Learning models as well as process-based Light Use Efficiency models that used a combination of remotely sensed and agrometeorological data performing best. The review showed that matching the model to the available data could improve the ability to predict wheat, barley or canola yield. The use of quantitative statistical techniques in this review, should give modellers trying to predict wheat, barley or canola yield more confidence in matching their approach to the available data than previous reviews that relied on visual interpretation of data." @default.
- W4386205517 created "2023-08-28" @default.
- W4386205517 creator A5006113825 @default.
- W4386205517 creator A5018271453 @default.
- W4386205517 creator A5032768116 @default.
- W4386205517 creator A5057841598 @default.
- W4386205517 creator A5077680114 @default.
- W4386205517 date "2023-10-01" @default.
- W4386205517 modified "2023-09-27" @default.
- W4386205517 title "Matching the model to the available data to predict wheat, barley, or canola yield: A review of recently published models and data" @default.
- W4386205517 cites W174598607 @default.
- W4386205517 cites W1930678412 @default.
- W4386205517 cites W1971515366 @default.
- W4386205517 cites W1984670478 @default.
- W4386205517 cites W2021662310 @default.
- W4386205517 cites W2051060685 @default.
- W4386205517 cites W2060647962 @default.
- W4386205517 cites W2085446849 @default.
- W4386205517 cites W2093275097 @default.
- W4386205517 cites W2101108516 @default.
- W4386205517 cites W2126258620 @default.
- W4386205517 cites W2132077228 @default.
- W4386205517 cites W2171111677 @default.
- W4386205517 cites W2581467878 @default.
- W4386205517 cites W2616805127 @default.
- W4386205517 cites W2767273025 @default.
- W4386205517 cites W2792871608 @default.
- W4386205517 cites W2794195626 @default.
- W4386205517 cites W2800719853 @default.
- W4386205517 cites W2805142011 @default.
- W4386205517 cites W2810045082 @default.
- W4386205517 cites W2884526666 @default.
- W4386205517 cites W2885573894 @default.
- W4386205517 cites W2888811333 @default.
- W4386205517 cites W2898543370 @default.
- W4386205517 cites W2905983018 @default.
- W4386205517 cites W2931017674 @default.
- W4386205517 cites W2971456001 @default.
- W4386205517 cites W2997735699 @default.
- W4386205517 cites W3012717404 @default.
- W4386205517 cites W3048727648 @default.
- W4386205517 cites W3079760979 @default.
- W4386205517 cites W3184850568 @default.
- W4386205517 cites W3196327550 @default.
- W4386205517 doi "https://doi.org/10.1016/j.agsy.2023.103749" @default.
- W4386205517 hasPublicationYear "2023" @default.
- W4386205517 type Work @default.
- W4386205517 citedByCount "0" @default.
- W4386205517 crossrefType "journal-article" @default.
- W4386205517 hasAuthorship W4386205517A5006113825 @default.
- W4386205517 hasAuthorship W4386205517A5018271453 @default.
- W4386205517 hasAuthorship W4386205517A5032768116 @default.
- W4386205517 hasAuthorship W4386205517A5057841598 @default.
- W4386205517 hasAuthorship W4386205517A5077680114 @default.
- W4386205517 hasBestOaLocation W43862055171 @default.
- W4386205517 hasConcept C119857082 @default.
- W4386205517 hasConcept C126343540 @default.
- W4386205517 hasConcept C127413603 @default.
- W4386205517 hasConcept C132651083 @default.
- W4386205517 hasConcept C134121241 @default.
- W4386205517 hasConcept C139719470 @default.
- W4386205517 hasConcept C144024400 @default.
- W4386205517 hasConcept C149782125 @default.
- W4386205517 hasConcept C149923435 @default.
- W4386205517 hasConcept C162324750 @default.
- W4386205517 hasConcept C17744445 @default.
- W4386205517 hasConcept C18903297 @default.
- W4386205517 hasConcept C191897082 @default.
- W4386205517 hasConcept C192562407 @default.
- W4386205517 hasConcept C199539241 @default.
- W4386205517 hasConcept C205649164 @default.
- W4386205517 hasConcept C2777106113 @default.
- W4386205517 hasConcept C2778348673 @default.
- W4386205517 hasConcept C2778755073 @default.
- W4386205517 hasConcept C2779223168 @default.
- W4386205517 hasConcept C2779473830 @default.
- W4386205517 hasConcept C2908647359 @default.
- W4386205517 hasConcept C33923547 @default.
- W4386205517 hasConcept C41008148 @default.
- W4386205517 hasConcept C45804977 @default.
- W4386205517 hasConcept C58640448 @default.
- W4386205517 hasConcept C6557445 @default.
- W4386205517 hasConcept C83867959 @default.
- W4386205517 hasConcept C86803240 @default.
- W4386205517 hasConcept C88463610 @default.
- W4386205517 hasConceptScore W4386205517C119857082 @default.
- W4386205517 hasConceptScore W4386205517C126343540 @default.
- W4386205517 hasConceptScore W4386205517C127413603 @default.
- W4386205517 hasConceptScore W4386205517C132651083 @default.
- W4386205517 hasConceptScore W4386205517C134121241 @default.
- W4386205517 hasConceptScore W4386205517C139719470 @default.
- W4386205517 hasConceptScore W4386205517C144024400 @default.
- W4386205517 hasConceptScore W4386205517C149782125 @default.
- W4386205517 hasConceptScore W4386205517C149923435 @default.
- W4386205517 hasConceptScore W4386205517C162324750 @default.
- W4386205517 hasConceptScore W4386205517C17744445 @default.
- W4386205517 hasConceptScore W4386205517C18903297 @default.
- W4386205517 hasConceptScore W4386205517C191897082 @default.