Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386206368> ?p ?o ?g. }
- W4386206368 endingPage "391" @default.
- W4386206368 startingPage "379" @default.
- W4386206368 abstract "This study presents a novel numerical integration technique based on Artificial Neural Network (ANN) algorithms to overcome intrinsic limitations characterizing the Boundary Element Method (BEM). The proposed approach, taking advantage of some peculiar properties of the BEM equations, provides an effective alternative to traditional numerical techniques for evaluating the integrated kernels required to compute the displacements and stresses of a two-dimensional solid. Assuming isotropy and homogeneity, and modeling both the geometry and the mechanical parameters using quadratic shape functions, all the integrals in the classical BEM formulation can be expressed as the sum of two terms that are independent of the constitutive properties and solely dependent on four geometric parameters: three components of two distance vectors and a parameter representing the element’s curvature. This interesting property of boundary integral equations in elasticity makes them particularly amenable to numerical evaluation using artificial neural networks. Results from numerical tests, which were conducted using increasingly complex integrals, demonstrate the high precision of the proposed approach as long as the integration and collocation points are sufficiently separated to avoid issues with singularity." @default.
- W4386206368 created "2023-08-28" @default.
- W4386206368 creator A5011946599 @default.
- W4386206368 creator A5013801504 @default.
- W4386206368 creator A5079190106 @default.
- W4386206368 date "2023-11-01" @default.
- W4386206368 modified "2023-09-24" @default.
- W4386206368 title "An efficient Artificial Neural Network algorithm for solving boundary integral equations in elasticity" @default.
- W4386206368 cites W1995341919 @default.
- W4386206368 cites W2000425991 @default.
- W4386206368 cites W2030406072 @default.
- W4386206368 cites W2051053118 @default.
- W4386206368 cites W2093503852 @default.
- W4386206368 cites W2162170353 @default.
- W4386206368 cites W2254020839 @default.
- W4386206368 cites W2527989153 @default.
- W4386206368 cites W2551372974 @default.
- W4386206368 cites W2590552603 @default.
- W4386206368 cites W2749686035 @default.
- W4386206368 cites W2753246113 @default.
- W4386206368 cites W2781805516 @default.
- W4386206368 cites W2785071288 @default.
- W4386206368 cites W2809156110 @default.
- W4386206368 cites W2873839375 @default.
- W4386206368 cites W3023212902 @default.
- W4386206368 cites W3120780149 @default.
- W4386206368 cites W3126981245 @default.
- W4386206368 cites W3190714514 @default.
- W4386206368 cites W3202668429 @default.
- W4386206368 cites W36951717 @default.
- W4386206368 cites W4200248815 @default.
- W4386206368 cites W4206840588 @default.
- W4386206368 cites W4210527752 @default.
- W4386206368 cites W4211234166 @default.
- W4386206368 cites W4221090300 @default.
- W4386206368 cites W4226108644 @default.
- W4386206368 cites W4226497820 @default.
- W4386206368 cites W4247997373 @default.
- W4386206368 cites W4281990679 @default.
- W4386206368 cites W4286255684 @default.
- W4386206368 cites W4286438561 @default.
- W4386206368 cites W4294723170 @default.
- W4386206368 cites W4295364745 @default.
- W4386206368 cites W4296196008 @default.
- W4386206368 cites W4296836633 @default.
- W4386206368 cites W4306978138 @default.
- W4386206368 cites W4310130545 @default.
- W4386206368 cites W4311906764 @default.
- W4386206368 cites W4317746108 @default.
- W4386206368 cites W4319336317 @default.
- W4386206368 cites W4324058386 @default.
- W4386206368 doi "https://doi.org/10.1016/j.enganabound.2023.08.020" @default.
- W4386206368 hasPublicationYear "2023" @default.
- W4386206368 type Work @default.
- W4386206368 citedByCount "0" @default.
- W4386206368 crossrefType "journal-article" @default.
- W4386206368 hasAuthorship W4386206368A5011946599 @default.
- W4386206368 hasAuthorship W4386206368A5013801504 @default.
- W4386206368 hasAuthorship W4386206368A5079190106 @default.
- W4386206368 hasBestOaLocation W43862063681 @default.
- W4386206368 hasConcept C11413529 @default.
- W4386206368 hasConcept C121332964 @default.
- W4386206368 hasConcept C121854251 @default.
- W4386206368 hasConcept C127349201 @default.
- W4386206368 hasConcept C129844170 @default.
- W4386206368 hasConcept C134306372 @default.
- W4386206368 hasConcept C135628077 @default.
- W4386206368 hasConcept C154945302 @default.
- W4386206368 hasConcept C159985019 @default.
- W4386206368 hasConcept C16171025 @default.
- W4386206368 hasConcept C184050105 @default.
- W4386206368 hasConcept C192562407 @default.
- W4386206368 hasConcept C195065555 @default.
- W4386206368 hasConcept C2126413 @default.
- W4386206368 hasConcept C2524010 @default.
- W4386206368 hasConcept C27016315 @default.
- W4386206368 hasConcept C28826006 @default.
- W4386206368 hasConcept C33923547 @default.
- W4386206368 hasConcept C41008148 @default.
- W4386206368 hasConcept C48753275 @default.
- W4386206368 hasConcept C50644808 @default.
- W4386206368 hasConcept C51544822 @default.
- W4386206368 hasConcept C62520636 @default.
- W4386206368 hasConcept C63632240 @default.
- W4386206368 hasConcept C78045399 @default.
- W4386206368 hasConcept C97355855 @default.
- W4386206368 hasConceptScore W4386206368C11413529 @default.
- W4386206368 hasConceptScore W4386206368C121332964 @default.
- W4386206368 hasConceptScore W4386206368C121854251 @default.
- W4386206368 hasConceptScore W4386206368C127349201 @default.
- W4386206368 hasConceptScore W4386206368C129844170 @default.
- W4386206368 hasConceptScore W4386206368C134306372 @default.
- W4386206368 hasConceptScore W4386206368C135628077 @default.
- W4386206368 hasConceptScore W4386206368C154945302 @default.
- W4386206368 hasConceptScore W4386206368C159985019 @default.
- W4386206368 hasConceptScore W4386206368C16171025 @default.
- W4386206368 hasConceptScore W4386206368C184050105 @default.
- W4386206368 hasConceptScore W4386206368C192562407 @default.