Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386207891> ?p ?o ?g. }
- W4386207891 abstract "This paper presents a novel method to enhance the predictive performance of the Echo State Network (ESN) model by adopting reservoir topology learning. ESNs are a type of Recurrent Neural Network (RNN) that have demonstrated considerable potential in various applications, but they can be challenging to train and optimize due to their random initialization. To improve the learning capabilities of ESNs and enhance their effectiveness in a broad range of predictive tasks, we utilize a structure learning algorithm. The proposed approach modifies the ESN reservoir's connectivity by applying techniques such as reversing, deleting, and adding new connections. We evaluate our proposal performance using both synthetic and real datasets, and our results indicate that it can substantially improve predictive accuracy compared to traditional ESNs." @default.
- W4386207891 created "2023-08-28" @default.
- W4386207891 creator A5028634075 @default.
- W4386207891 creator A5074521145 @default.
- W4386207891 creator A5089206286 @default.
- W4386207891 date "2023-07-09" @default.
- W4386207891 modified "2023-10-16" @default.
- W4386207891 title "A Novel Approach of ESN Reservoir Structure Learning for Improved Predictive Performance" @default.
- W4386207891 cites W1850374449 @default.
- W4386207891 cites W1869683314 @default.
- W4386207891 cites W1975062332 @default.
- W4386207891 cites W2002055708 @default.
- W4386207891 cites W2024805871 @default.
- W4386207891 cites W2027435682 @default.
- W4386207891 cites W2041645455 @default.
- W4386207891 cites W2103179919 @default.
- W4386207891 cites W2106397771 @default.
- W4386207891 cites W2159682675 @default.
- W4386207891 cites W2504664625 @default.
- W4386207891 cites W2560486644 @default.
- W4386207891 cites W2585008544 @default.
- W4386207891 cites W2785916359 @default.
- W4386207891 cites W2797721853 @default.
- W4386207891 cites W2884156131 @default.
- W4386207891 cites W2885643851 @default.
- W4386207891 cites W2896656205 @default.
- W4386207891 cites W2897156932 @default.
- W4386207891 cites W2901263206 @default.
- W4386207891 cites W2926690412 @default.
- W4386207891 cites W2944646475 @default.
- W4386207891 cites W2949449669 @default.
- W4386207891 cites W2960600329 @default.
- W4386207891 cites W2971803538 @default.
- W4386207891 cites W2972858918 @default.
- W4386207891 cites W2995139801 @default.
- W4386207891 cites W3000232078 @default.
- W4386207891 cites W3015121100 @default.
- W4386207891 cites W3032135501 @default.
- W4386207891 cites W3064585887 @default.
- W4386207891 cites W3093400026 @default.
- W4386207891 cites W3107493413 @default.
- W4386207891 cites W3133817364 @default.
- W4386207891 cites W3156005160 @default.
- W4386207891 cites W3158554999 @default.
- W4386207891 cites W3165055457 @default.
- W4386207891 cites W3199865141 @default.
- W4386207891 cites W4220779251 @default.
- W4386207891 cites W4236354166 @default.
- W4386207891 cites W4319836079 @default.
- W4386207891 cites W4366308461 @default.
- W4386207891 doi "https://doi.org/10.1109/iscc58397.2023.10218132" @default.
- W4386207891 hasPublicationYear "2023" @default.
- W4386207891 type Work @default.
- W4386207891 citedByCount "0" @default.
- W4386207891 crossrefType "proceedings-article" @default.
- W4386207891 hasAuthorship W4386207891A5028634075 @default.
- W4386207891 hasAuthorship W4386207891A5074521145 @default.
- W4386207891 hasAuthorship W4386207891A5089206286 @default.
- W4386207891 hasConcept C111919701 @default.
- W4386207891 hasConcept C114466953 @default.
- W4386207891 hasConcept C119857082 @default.
- W4386207891 hasConcept C127413603 @default.
- W4386207891 hasConcept C135796866 @default.
- W4386207891 hasConcept C146978453 @default.
- W4386207891 hasConcept C147168706 @default.
- W4386207891 hasConcept C154945302 @default.
- W4386207891 hasConcept C172025690 @default.
- W4386207891 hasConcept C199360897 @default.
- W4386207891 hasConcept C199845137 @default.
- W4386207891 hasConcept C204323151 @default.
- W4386207891 hasConcept C41008148 @default.
- W4386207891 hasConcept C50644808 @default.
- W4386207891 hasConceptScore W4386207891C111919701 @default.
- W4386207891 hasConceptScore W4386207891C114466953 @default.
- W4386207891 hasConceptScore W4386207891C119857082 @default.
- W4386207891 hasConceptScore W4386207891C127413603 @default.
- W4386207891 hasConceptScore W4386207891C135796866 @default.
- W4386207891 hasConceptScore W4386207891C146978453 @default.
- W4386207891 hasConceptScore W4386207891C147168706 @default.
- W4386207891 hasConceptScore W4386207891C154945302 @default.
- W4386207891 hasConceptScore W4386207891C172025690 @default.
- W4386207891 hasConceptScore W4386207891C199360897 @default.
- W4386207891 hasConceptScore W4386207891C199845137 @default.
- W4386207891 hasConceptScore W4386207891C204323151 @default.
- W4386207891 hasConceptScore W4386207891C41008148 @default.
- W4386207891 hasConceptScore W4386207891C50644808 @default.
- W4386207891 hasLocation W43862078911 @default.
- W4386207891 hasOpenAccess W4386207891 @default.
- W4386207891 hasPrimaryLocation W43862078911 @default.
- W4386207891 hasRelatedWork W1981785705 @default.
- W4386207891 hasRelatedWork W1996940434 @default.
- W4386207891 hasRelatedWork W2084610394 @default.
- W4386207891 hasRelatedWork W2137783571 @default.
- W4386207891 hasRelatedWork W2965206119 @default.
- W4386207891 hasRelatedWork W3133709561 @default.
- W4386207891 hasRelatedWork W4385478418 @default.
- W4386207891 hasRelatedWork W4386207891 @default.
- W4386207891 hasRelatedWork W48447644 @default.
- W4386207891 hasRelatedWork W57315087 @default.
- W4386207891 isParatext "false" @default.