Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386208041> ?p ?o ?g. }
- W4386208041 endingPage "108171" @default.
- W4386208041 startingPage "108171" @default.
- W4386208041 abstract "This paper presents a semi-analytical solution for the 3D problem of a cylindrical tunnel embedded in an elastic half-space subject to plane harmonic compressional and shear waves. Both the tunnel and soil are modelled as an elastic continuum. Conformal mapping is employed to transform the original physical domain with boundary surfaces of two different types onto an image domain with surfaces of the same type, which makes the problem easier to solve. The total wave field in the half-space consists of incident and reflected (from the half-space surface) plane waves, as well as directly and secondary scattered cylindrical waves, while the total wave field in the tunnel consists of refracted cylindrical waves. The secondary scattered waves, generated when the cylindrical waves directly scattered from the tunnel meet the half-space surface, are represented by cylindrical waves that originate from an image source, which is in line with the spirit of the method of images. The unknown amplitude coefficients of the cylindrical waves are determined from the boundary and continuity conditions of the tunnel–soil system by projecting those onto the set of circumferential modes, which results in a set of algebraic equations. Results show that the present method converges for a small number of circumferential modes. We observe very good agreement between the obtained results and those in literature. In a systematic evaluation, we demonstrate that the method works well for the frequency band of seismic waves, as well as for the complete considered ranges of the tunnel/soil stiffness ratio, the embedded depth of the tunnel, the vertical incident angle and the tunnel thickness. However, the results obtained for a moderate tunnel–soil stiffness contrast under the incident compressional wave are inaccurate when Hankel functions are used to represent the cylindrical waves in the tunnel, which is due to the refracted shear waves in the tunnel transitioning from propagating to evanescent (in the 3D case). These inaccuracies can be perfectly overcome by representing the waves in the tunnel by Bessel functions. We also find that the present method generally works better for the incident compressional wave than for the incident shear wave, as the condition number of the matrix (related to the mentioned algebraic equations) is often larger in the latter case. In view of engineering practice, we conclude that the tunnel is safer when the surrounding soil is stiffer, the tunnel is thicker and the vertical incident angle is larger. Finally, the present method, which is in general fast, elegant and accurate, can be used in preliminary design so as to avoid pronounced resonances, and to assess stress distributions and ground vibrations." @default.
- W4386208041 created "2023-08-28" @default.
- W4386208041 creator A5018086402 @default.
- W4386208041 creator A5041363301 @default.
- W4386208041 creator A5078388624 @default.
- W4386208041 creator A5089029165 @default.
- W4386208041 date "2023-11-01" @default.
- W4386208041 modified "2023-10-05" @default.
- W4386208041 title "Semi-analytical solution for the 3D response of a tunnel embedded in an elastic half-space subject to seismic waves" @default.
- W4386208041 cites W1973832227 @default.
- W4386208041 cites W1981077234 @default.
- W4386208041 cites W1987995180 @default.
- W4386208041 cites W1991574128 @default.
- W4386208041 cites W1993789647 @default.
- W4386208041 cites W2001745683 @default.
- W4386208041 cites W2004072490 @default.
- W4386208041 cites W2021071302 @default.
- W4386208041 cites W2023850449 @default.
- W4386208041 cites W2027332479 @default.
- W4386208041 cites W2038066723 @default.
- W4386208041 cites W2038529946 @default.
- W4386208041 cites W2041056974 @default.
- W4386208041 cites W2057834363 @default.
- W4386208041 cites W2072954376 @default.
- W4386208041 cites W2074992680 @default.
- W4386208041 cites W2077569485 @default.
- W4386208041 cites W2079995930 @default.
- W4386208041 cites W2091748796 @default.
- W4386208041 cites W2101367018 @default.
- W4386208041 cites W2114426969 @default.
- W4386208041 cites W2134608995 @default.
- W4386208041 cites W2137399910 @default.
- W4386208041 cites W2150617798 @default.
- W4386208041 cites W2287032680 @default.
- W4386208041 cites W2756346511 @default.
- W4386208041 cites W3093370657 @default.
- W4386208041 cites W310999178 @default.
- W4386208041 doi "https://doi.org/10.1016/j.soildyn.2023.108171" @default.
- W4386208041 hasPublicationYear "2023" @default.
- W4386208041 type Work @default.
- W4386208041 citedByCount "0" @default.
- W4386208041 crossrefType "journal-article" @default.
- W4386208041 hasAuthorship W4386208041A5018086402 @default.
- W4386208041 hasAuthorship W4386208041A5041363301 @default.
- W4386208041 hasAuthorship W4386208041A5078388624 @default.
- W4386208041 hasAuthorship W4386208041A5089029165 @default.
- W4386208041 hasBestOaLocation W43862080411 @default.
- W4386208041 hasConcept C120665830 @default.
- W4386208041 hasConcept C121332964 @default.
- W4386208041 hasConcept C127313418 @default.
- W4386208041 hasConcept C134306372 @default.
- W4386208041 hasConcept C143351421 @default.
- W4386208041 hasConcept C182310444 @default.
- W4386208041 hasConcept C2524010 @default.
- W4386208041 hasConcept C2779438780 @default.
- W4386208041 hasConcept C33923547 @default.
- W4386208041 hasConcept C39557679 @default.
- W4386208041 hasConcept C43179477 @default.
- W4386208041 hasConcept C44886760 @default.
- W4386208041 hasConcept C57879066 @default.
- W4386208041 hasConcept C5900021 @default.
- W4386208041 hasConcept C62354387 @default.
- W4386208041 hasConcept C78542244 @default.
- W4386208041 hasConcept C8058405 @default.
- W4386208041 hasConcept C91588493 @default.
- W4386208041 hasConcept C96035792 @default.
- W4386208041 hasConcept C98214594 @default.
- W4386208041 hasConceptScore W4386208041C120665830 @default.
- W4386208041 hasConceptScore W4386208041C121332964 @default.
- W4386208041 hasConceptScore W4386208041C127313418 @default.
- W4386208041 hasConceptScore W4386208041C134306372 @default.
- W4386208041 hasConceptScore W4386208041C143351421 @default.
- W4386208041 hasConceptScore W4386208041C182310444 @default.
- W4386208041 hasConceptScore W4386208041C2524010 @default.
- W4386208041 hasConceptScore W4386208041C2779438780 @default.
- W4386208041 hasConceptScore W4386208041C33923547 @default.
- W4386208041 hasConceptScore W4386208041C39557679 @default.
- W4386208041 hasConceptScore W4386208041C43179477 @default.
- W4386208041 hasConceptScore W4386208041C44886760 @default.
- W4386208041 hasConceptScore W4386208041C57879066 @default.
- W4386208041 hasConceptScore W4386208041C5900021 @default.
- W4386208041 hasConceptScore W4386208041C62354387 @default.
- W4386208041 hasConceptScore W4386208041C78542244 @default.
- W4386208041 hasConceptScore W4386208041C8058405 @default.
- W4386208041 hasConceptScore W4386208041C91588493 @default.
- W4386208041 hasConceptScore W4386208041C96035792 @default.
- W4386208041 hasConceptScore W4386208041C98214594 @default.
- W4386208041 hasFunder F4320322725 @default.
- W4386208041 hasLocation W43862080411 @default.
- W4386208041 hasOpenAccess W4386208041 @default.
- W4386208041 hasPrimaryLocation W43862080411 @default.
- W4386208041 hasRelatedWork W2019176073 @default.
- W4386208041 hasRelatedWork W2030618463 @default.
- W4386208041 hasRelatedWork W2070582133 @default.
- W4386208041 hasRelatedWork W2103891344 @default.
- W4386208041 hasRelatedWork W2157523972 @default.
- W4386208041 hasRelatedWork W2266680644 @default.
- W4386208041 hasRelatedWork W2323534219 @default.