Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386212347> ?p ?o ?g. }
- W4386212347 endingPage "10" @default.
- W4386212347 startingPage "1" @default.
- W4386212347 abstract "Building subsurface models is a very important but challenging task in hydrocarbon exploration and development. The subsurface elastic properties are usually sourced from seismic data and well logs. Thus, we design a deep learning (DL) framework using Vision Transformer (ViT) as the backbone architecture to build the subsurface model using well log information as we apply full waveform inversion (FWI) on the seismic data. However, training a ViT network from scratch with limited well log data can be difficult to achieve good generalization. To overcome this, we implement an efficient self-supervised pre-training process using a masked autoencoder (MAE) architecture to learn important feature representations in seismic volumes. The seismic volumes required by the pre-training are randomly extracted from a seismic inversion, such as an FWI result. We can also incorporate reverse time migration (RTM) image into the seismic volumes to provide additional structure information. The pre-training task of MAE is to reconstruct the original image from the masked image with a masking ratio of 75%. This pre-training task enables the network to learn the high-level latent representations. After the pre-training process, we then fine-tune the ViT network to build the optimal mapping relationship between 2D seismic volumes and 1D well segments. Once the fine-tuning process is finished, we apply the trained ViT network to the whole seismic inversion domain to predict the subsurface model. At last, we use one synthetic data set and two field data sets to test the performance of the proposed method. The test results demonstrate that the proposed method effectively integrates seismic and well information to improve the resolution and accuracy of the velocity model." @default.
- W4386212347 created "2023-08-29" @default.
- W4386212347 creator A5032021877 @default.
- W4386212347 creator A5041253684 @default.
- W4386212347 creator A5046420497 @default.
- W4386212347 creator A5065928396 @default.
- W4386212347 date "2023-01-01" @default.
- W4386212347 modified "2023-10-06" @default.
- W4386212347 title "Self-Supervised Pre-training Vision Transformer with Masked Autoencoders for Building Subsurface Model" @default.
- W4386212347 cites W2009552164 @default.
- W4386212347 cites W2022607354 @default.
- W4386212347 cites W2076211048 @default.
- W4386212347 cites W2082213597 @default.
- W4386212347 cites W2114735878 @default.
- W4386212347 cites W2138333806 @default.
- W4386212347 cites W2316322413 @default.
- W4386212347 cites W2776585113 @default.
- W4386212347 cites W2794284562 @default.
- W4386212347 cites W2912052494 @default.
- W4386212347 cites W2915004230 @default.
- W4386212347 cites W2919115771 @default.
- W4386212347 cites W2953182346 @default.
- W4386212347 cites W2966977996 @default.
- W4386212347 cites W2968094316 @default.
- W4386212347 cites W2968528446 @default.
- W4386212347 cites W2979483515 @default.
- W4386212347 cites W2982350982 @default.
- W4386212347 cites W2987357275 @default.
- W4386212347 cites W2990811303 @default.
- W4386212347 cites W3014029212 @default.
- W4386212347 cites W3019166713 @default.
- W4386212347 cites W3045911340 @default.
- W4386212347 cites W3046296398 @default.
- W4386212347 cites W3047855151 @default.
- W4386212347 cites W3138516171 @default.
- W4386212347 cites W3152714594 @default.
- W4386212347 cites W3167054859 @default.
- W4386212347 cites W3193509129 @default.
- W4386212347 cites W3200032123 @default.
- W4386212347 cites W3200644853 @default.
- W4386212347 cites W3202397552 @default.
- W4386212347 cites W3203568839 @default.
- W4386212347 cites W3204593973 @default.
- W4386212347 cites W3208869780 @default.
- W4386212347 cites W4206706211 @default.
- W4386212347 cites W4213019189 @default.
- W4386212347 cites W4220742635 @default.
- W4386212347 cites W4220830304 @default.
- W4386212347 cites W4224040441 @default.
- W4386212347 cites W4285142909 @default.
- W4386212347 cites W4285221120 @default.
- W4386212347 cites W4285277997 @default.
- W4386212347 cites W4310856925 @default.
- W4386212347 doi "https://doi.org/10.1109/tgrs.2023.3308999" @default.
- W4386212347 hasPublicationYear "2023" @default.
- W4386212347 type Work @default.
- W4386212347 citedByCount "0" @default.
- W4386212347 crossrefType "journal-article" @default.
- W4386212347 hasAuthorship W4386212347A5032021877 @default.
- W4386212347 hasAuthorship W4386212347A5041253684 @default.
- W4386212347 hasAuthorship W4386212347A5046420497 @default.
- W4386212347 hasAuthorship W4386212347A5065928396 @default.
- W4386212347 hasConcept C101738243 @default.
- W4386212347 hasConcept C108583219 @default.
- W4386212347 hasConcept C119599485 @default.
- W4386212347 hasConcept C119857082 @default.
- W4386212347 hasConcept C127313418 @default.
- W4386212347 hasConcept C127413603 @default.
- W4386212347 hasConcept C153180895 @default.
- W4386212347 hasConcept C154945302 @default.
- W4386212347 hasConcept C165205528 @default.
- W4386212347 hasConcept C165801399 @default.
- W4386212347 hasConcept C16910744 @default.
- W4386212347 hasConcept C1893757 @default.
- W4386212347 hasConcept C199360897 @default.
- W4386212347 hasConcept C41008148 @default.
- W4386212347 hasConcept C50644808 @default.
- W4386212347 hasConcept C59404180 @default.
- W4386212347 hasConcept C66322947 @default.
- W4386212347 hasConcept C77928131 @default.
- W4386212347 hasConceptScore W4386212347C101738243 @default.
- W4386212347 hasConceptScore W4386212347C108583219 @default.
- W4386212347 hasConceptScore W4386212347C119599485 @default.
- W4386212347 hasConceptScore W4386212347C119857082 @default.
- W4386212347 hasConceptScore W4386212347C127313418 @default.
- W4386212347 hasConceptScore W4386212347C127413603 @default.
- W4386212347 hasConceptScore W4386212347C153180895 @default.
- W4386212347 hasConceptScore W4386212347C154945302 @default.
- W4386212347 hasConceptScore W4386212347C165205528 @default.
- W4386212347 hasConceptScore W4386212347C165801399 @default.
- W4386212347 hasConceptScore W4386212347C16910744 @default.
- W4386212347 hasConceptScore W4386212347C1893757 @default.
- W4386212347 hasConceptScore W4386212347C199360897 @default.
- W4386212347 hasConceptScore W4386212347C41008148 @default.
- W4386212347 hasConceptScore W4386212347C50644808 @default.
- W4386212347 hasConceptScore W4386212347C59404180 @default.
- W4386212347 hasConceptScore W4386212347C66322947 @default.
- W4386212347 hasConceptScore W4386212347C77928131 @default.