Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386213622> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4386213622 abstract "In order to recognize patterns in images, this study tests the performance of many “machine learning algorithms” and feature extraction methods. Here, synthetic photographs of handwritten digits are used to compare the performance of four machine learning methods (“deep learning, support vector machines, decision trees, and random forests”) and two feature extraction strategies (raw pixel values and Histogram of Oriented Gradients). The efficacy of each algorithm is measured in terms of its “accuracy, precision, recall, and F1 score”, among others. Our findings also demonstrate that the Histogram of Oriented Gradients feature extraction method is good at collecting local gradient information in pictures and that deep learning and support vector machines obtain the best accuracy overall. The results of our research have significant ramifications for the future of machine learning techniques used in computer vision and handwriting recognition. Research in the future may test these methods on other datasets and picture kinds, or look into alternative feature extraction strategies and machine learning algorithms." @default.
- W4386213622 created "2023-08-29" @default.
- W4386213622 creator A5019965908 @default.
- W4386213622 creator A5021558068 @default.
- W4386213622 creator A5062965678 @default.
- W4386213622 creator A5064889582 @default.
- W4386213622 creator A5080074600 @default.
- W4386213622 creator A5092706169 @default.
- W4386213622 date "2023-08-03" @default.
- W4386213622 modified "2023-10-16" @default.
- W4386213622 title "Investigation of Machine Learning Algorithms for Pattern Recognition in Image Processing" @default.
- W4386213622 cites W2919159054 @default.
- W4386213622 cites W2946796433 @default.
- W4386213622 cites W2964118901 @default.
- W4386213622 cites W2969097171 @default.
- W4386213622 cites W2969790209 @default.
- W4386213622 cites W3003447185 @default.
- W4386213622 cites W3007943565 @default.
- W4386213622 cites W3107335993 @default.
- W4386213622 cites W3119568095 @default.
- W4386213622 cites W3129469040 @default.
- W4386213622 cites W3137773357 @default.
- W4386213622 cites W3196796801 @default.
- W4386213622 cites W4306250030 @default.
- W4386213622 cites W4362705816 @default.
- W4386213622 doi "https://doi.org/10.1109/icirca57980.2023.10220656" @default.
- W4386213622 hasPublicationYear "2023" @default.
- W4386213622 type Work @default.
- W4386213622 citedByCount "0" @default.
- W4386213622 crossrefType "proceedings-article" @default.
- W4386213622 hasAuthorship W4386213622A5019965908 @default.
- W4386213622 hasAuthorship W4386213622A5021558068 @default.
- W4386213622 hasAuthorship W4386213622A5062965678 @default.
- W4386213622 hasAuthorship W4386213622A5064889582 @default.
- W4386213622 hasAuthorship W4386213622A5080074600 @default.
- W4386213622 hasAuthorship W4386213622A5092706169 @default.
- W4386213622 hasConcept C11413529 @default.
- W4386213622 hasConcept C115961682 @default.
- W4386213622 hasConcept C119857082 @default.
- W4386213622 hasConcept C12267149 @default.
- W4386213622 hasConcept C138885662 @default.
- W4386213622 hasConcept C153180895 @default.
- W4386213622 hasConcept C154945302 @default.
- W4386213622 hasConcept C169258074 @default.
- W4386213622 hasConcept C17426736 @default.
- W4386213622 hasConcept C2776401178 @default.
- W4386213622 hasConcept C2779386606 @default.
- W4386213622 hasConcept C41008148 @default.
- W4386213622 hasConcept C41895202 @default.
- W4386213622 hasConcept C52622490 @default.
- W4386213622 hasConcept C53533937 @default.
- W4386213622 hasConcept C84525736 @default.
- W4386213622 hasConceptScore W4386213622C11413529 @default.
- W4386213622 hasConceptScore W4386213622C115961682 @default.
- W4386213622 hasConceptScore W4386213622C119857082 @default.
- W4386213622 hasConceptScore W4386213622C12267149 @default.
- W4386213622 hasConceptScore W4386213622C138885662 @default.
- W4386213622 hasConceptScore W4386213622C153180895 @default.
- W4386213622 hasConceptScore W4386213622C154945302 @default.
- W4386213622 hasConceptScore W4386213622C169258074 @default.
- W4386213622 hasConceptScore W4386213622C17426736 @default.
- W4386213622 hasConceptScore W4386213622C2776401178 @default.
- W4386213622 hasConceptScore W4386213622C2779386606 @default.
- W4386213622 hasConceptScore W4386213622C41008148 @default.
- W4386213622 hasConceptScore W4386213622C41895202 @default.
- W4386213622 hasConceptScore W4386213622C52622490 @default.
- W4386213622 hasConceptScore W4386213622C53533937 @default.
- W4386213622 hasConceptScore W4386213622C84525736 @default.
- W4386213622 hasLocation W43862136221 @default.
- W4386213622 hasOpenAccess W4386213622 @default.
- W4386213622 hasPrimaryLocation W43862136221 @default.
- W4386213622 hasRelatedWork W1995536880 @default.
- W4386213622 hasRelatedWork W2336974148 @default.
- W4386213622 hasRelatedWork W2380902646 @default.
- W4386213622 hasRelatedWork W2550539038 @default.
- W4386213622 hasRelatedWork W2620723295 @default.
- W4386213622 hasRelatedWork W2767563364 @default.
- W4386213622 hasRelatedWork W2779573348 @default.
- W4386213622 hasRelatedWork W4255221925 @default.
- W4386213622 hasRelatedWork W4321636153 @default.
- W4386213622 hasRelatedWork W4377964522 @default.
- W4386213622 isParatext "false" @default.
- W4386213622 isRetracted "false" @default.
- W4386213622 workType "article" @default.