Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386213772> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4386213772 abstract "In the analysis of data in healthcare industry, data mining strategies play an important role in various industries as well as in different domains. Lymphoma is the formation of lymphatic cancer. It begins in lymphocytes, a form of a white blood cell. These cells aid in the fight against disease and work an important role in the human body's innate immunity. Because this issue is found in the lymph system, it would fastly spread to other organs and tissues in the human body. It is most commonly found in the bone-marrow and liver, bone marrow. Lymphoma affects any age of humans and is also a frequent cause of health issues. Data mining techniques analyses different aspects of data like unstructured or semi- structured. Data mining have various methods that are filtering unwanted data from data and discover new and useful information. Using data mining techniques, meaningful information is translated into knowledge that is valuable for all consumers in the health care's sector in the future. ML is popular in healthcare filed because it provides several benefits such as detection of cases of any disease provide solution of disease at low cost and identify medical treatment over disease. Medical Organization have vast quantities of complicated data and it progresses from day to day, which makes it impossible to interpret the data. For extracting and analyzing useful information from complex data step by step data mining methods applied which improves medical sector provides effective treatment. The aim of this research was improving lymphoma diagnosis accuracy of machine learning methods with Min Max Scalar normalisation techniques." @default.
- W4386213772 created "2023-08-29" @default.
- W4386213772 creator A5029597393 @default.
- W4386213772 creator A5064049665 @default.
- W4386213772 creator A5071522728 @default.
- W4386213772 date "2023-08-03" @default.
- W4386213772 modified "2023-09-26" @default.
- W4386213772 title "Data Mining Approaches in Healthcare Industry" @default.
- W4386213772 cites W2944736719 @default.
- W4386213772 cites W3021253394 @default.
- W4386213772 cites W3126684855 @default.
- W4386213772 cites W3134395539 @default.
- W4386213772 cites W4205556479 @default.
- W4386213772 cites W4206081602 @default.
- W4386213772 cites W4287887874 @default.
- W4386213772 cites W4293064393 @default.
- W4386213772 cites W4294693725 @default.
- W4386213772 cites W4313118988 @default.
- W4386213772 doi "https://doi.org/10.1109/icirca57980.2023.10220705" @default.
- W4386213772 hasPublicationYear "2023" @default.
- W4386213772 type Work @default.
- W4386213772 citedByCount "0" @default.
- W4386213772 crossrefType "proceedings-article" @default.
- W4386213772 hasAuthorship W4386213772A5029597393 @default.
- W4386213772 hasAuthorship W4386213772A5064049665 @default.
- W4386213772 hasAuthorship W4386213772A5071522728 @default.
- W4386213772 hasConcept C124101348 @default.
- W4386213772 hasConcept C142724271 @default.
- W4386213772 hasConcept C160735492 @default.
- W4386213772 hasConcept C162324750 @default.
- W4386213772 hasConcept C2522767166 @default.
- W4386213772 hasConcept C2779134260 @default.
- W4386213772 hasConcept C41008148 @default.
- W4386213772 hasConcept C50522688 @default.
- W4386213772 hasConcept C60644358 @default.
- W4386213772 hasConcept C71924100 @default.
- W4386213772 hasConcept C86803240 @default.
- W4386213772 hasConceptScore W4386213772C124101348 @default.
- W4386213772 hasConceptScore W4386213772C142724271 @default.
- W4386213772 hasConceptScore W4386213772C160735492 @default.
- W4386213772 hasConceptScore W4386213772C162324750 @default.
- W4386213772 hasConceptScore W4386213772C2522767166 @default.
- W4386213772 hasConceptScore W4386213772C2779134260 @default.
- W4386213772 hasConceptScore W4386213772C41008148 @default.
- W4386213772 hasConceptScore W4386213772C50522688 @default.
- W4386213772 hasConceptScore W4386213772C60644358 @default.
- W4386213772 hasConceptScore W4386213772C71924100 @default.
- W4386213772 hasConceptScore W4386213772C86803240 @default.
- W4386213772 hasLocation W43862137721 @default.
- W4386213772 hasOpenAccess W4386213772 @default.
- W4386213772 hasPrimaryLocation W43862137721 @default.
- W4386213772 hasRelatedWork W2178323067 @default.
- W4386213772 hasRelatedWork W2347219288 @default.
- W4386213772 hasRelatedWork W2366221835 @default.
- W4386213772 hasRelatedWork W2584479569 @default.
- W4386213772 hasRelatedWork W2748952813 @default.
- W4386213772 hasRelatedWork W2783354765 @default.
- W4386213772 hasRelatedWork W2899084033 @default.
- W4386213772 hasRelatedWork W4281693473 @default.
- W4386213772 hasRelatedWork W4288085467 @default.
- W4386213772 hasRelatedWork W4375840519 @default.
- W4386213772 isParatext "false" @default.
- W4386213772 isRetracted "false" @default.
- W4386213772 workType "article" @default.