Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386216089> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4386216089 endingPage "127721" @default.
- W4386216089 startingPage "127721" @default.
- W4386216089 abstract "Ill-posed inverse problems arise in a variety of practically important applications including image restoration, medicine, ecology as well as many other branches of pure and applied sciences. In this paper, we consider an ill-posed inverse problem for a two-dimensional nonlinear time-fractional inverse diffusion model involving the Caputo time-fractional derivative as follows:{Dtβu(x,y,t)=−a(x)(ux(x,y,t)+uy(x,y,t))+ℓ(x,y,t,u(x,y,t)),x>0,y>0,t>0,u(x,y,0)=0,x>0,y>0,limx→∞u(x,y,t)=0,y>0,t>0,u(1,y,t)=u1(y,t),y>0,t>0, where β∈(0,1) is fixed, a is a space-dependent diffusion coefficient, ℓ is a nonlinear function satisfying a Lipschitz condition, and the data u1 is given approximately. We want to determine u(x,y,t) for 0≤x<1. There exists a vast literature on regularization results related to the considered problem. We are concerned with regularization results for the nonlinear case. The first regularization results in such a case were studied by Tuan, Hoan and Tatar in [17]. While these results apply to a constant diffusivity coefficient in the one-dimensional setting, the results of Vo and co-worker in [18], more generally, apply to the case of the space-dependent diffusion coefficient in the two-dimensional setting. In all these papers relatively strong a priori assumptions on the regularity of the exact solution are made. In this work, we weaken such a priori assumptions via two regularization strategies based on the integral equation method. We obtain several explicit error estimates including an error estimate of the Hölder-Logarithmic type for all x∈[0,1), which can be seen as the improvement and the generalization of error estimates presented by Zheng and Wei in [20], [21]. Eventually, several numerical examples are presented for the purpose of illustrating the theoretical results." @default.
- W4386216089 created "2023-08-29" @default.
- W4386216089 creator A5064929276 @default.
- W4386216089 date "2024-02-01" @default.
- W4386216089 modified "2023-09-30" @default.
- W4386216089 title "On regularization results for a two-dimensional nonlinear time-fractional inverse diffusion problem" @default.
- W4386216089 cites W1966384449 @default.
- W4386216089 cites W1970573106 @default.
- W4386216089 cites W2008160098 @default.
- W4386216089 cites W2039324033 @default.
- W4386216089 cites W2041540906 @default.
- W4386216089 cites W2079961897 @default.
- W4386216089 cites W2084622529 @default.
- W4386216089 cites W2751151029 @default.
- W4386216089 cites W2755121322 @default.
- W4386216089 cites W2908963768 @default.
- W4386216089 cites W2933646296 @default.
- W4386216089 cites W2947730536 @default.
- W4386216089 cites W3099393693 @default.
- W4386216089 cites W3109073574 @default.
- W4386216089 doi "https://doi.org/10.1016/j.jmaa.2023.127721" @default.
- W4386216089 hasPublicationYear "2024" @default.
- W4386216089 type Work @default.
- W4386216089 citedByCount "0" @default.
- W4386216089 crossrefType "journal-article" @default.
- W4386216089 hasAuthorship W4386216089A5064929276 @default.
- W4386216089 hasConcept C114614502 @default.
- W4386216089 hasConcept C121332964 @default.
- W4386216089 hasConcept C134306372 @default.
- W4386216089 hasConcept C135252773 @default.
- W4386216089 hasConcept C154249771 @default.
- W4386216089 hasConcept C154945302 @default.
- W4386216089 hasConcept C158622935 @default.
- W4386216089 hasConcept C202444582 @default.
- W4386216089 hasConcept C207467116 @default.
- W4386216089 hasConcept C22324862 @default.
- W4386216089 hasConcept C2524010 @default.
- W4386216089 hasConcept C2776135515 @default.
- W4386216089 hasConcept C28826006 @default.
- W4386216089 hasConcept C33923547 @default.
- W4386216089 hasConcept C37914503 @default.
- W4386216089 hasConcept C41008148 @default.
- W4386216089 hasConcept C62520636 @default.
- W4386216089 hasConceptScore W4386216089C114614502 @default.
- W4386216089 hasConceptScore W4386216089C121332964 @default.
- W4386216089 hasConceptScore W4386216089C134306372 @default.
- W4386216089 hasConceptScore W4386216089C135252773 @default.
- W4386216089 hasConceptScore W4386216089C154249771 @default.
- W4386216089 hasConceptScore W4386216089C154945302 @default.
- W4386216089 hasConceptScore W4386216089C158622935 @default.
- W4386216089 hasConceptScore W4386216089C202444582 @default.
- W4386216089 hasConceptScore W4386216089C207467116 @default.
- W4386216089 hasConceptScore W4386216089C22324862 @default.
- W4386216089 hasConceptScore W4386216089C2524010 @default.
- W4386216089 hasConceptScore W4386216089C2776135515 @default.
- W4386216089 hasConceptScore W4386216089C28826006 @default.
- W4386216089 hasConceptScore W4386216089C33923547 @default.
- W4386216089 hasConceptScore W4386216089C37914503 @default.
- W4386216089 hasConceptScore W4386216089C41008148 @default.
- W4386216089 hasConceptScore W4386216089C62520636 @default.
- W4386216089 hasIssue "2" @default.
- W4386216089 hasLocation W43862160891 @default.
- W4386216089 hasOpenAccess W4386216089 @default.
- W4386216089 hasPrimaryLocation W43862160891 @default.
- W4386216089 hasRelatedWork W1965977581 @default.
- W4386216089 hasRelatedWork W2003554470 @default.
- W4386216089 hasRelatedWork W2090852531 @default.
- W4386216089 hasRelatedWork W2106766840 @default.
- W4386216089 hasRelatedWork W2124458868 @default.
- W4386216089 hasRelatedWork W2901632280 @default.
- W4386216089 hasRelatedWork W3007430728 @default.
- W4386216089 hasRelatedWork W4221163052 @default.
- W4386216089 hasRelatedWork W4298143267 @default.
- W4386216089 hasRelatedWork W4380483247 @default.
- W4386216089 hasVolume "530" @default.
- W4386216089 isParatext "false" @default.
- W4386216089 isRetracted "false" @default.
- W4386216089 workType "article" @default.