Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386219772> ?p ?o ?g. }
- W4386219772 endingPage "2259" @default.
- W4386219772 startingPage "2245" @default.
- W4386219772 abstract "The recognition of fire at its early stages and stopping it from causing socioeconomic and environmental disasters remains a demanding task. Despite the availability of convincing networks, there is a need to develop a lightweight network for resource-constraint devices rather than real-time fire detection in smart city contexts. To overcome this shortcoming, we presented a novel efficient lightweight network called FlameNet for fire detection in a smart city environment. Our proposed network works via two main steps: first, it detects the fire using the FlameNet; then, an alert is initiated and directed to the fire, medical, and rescue departments. Furthermore, we incorporate the MSA module to efficiently prioritize and enhance relevant fire-related prominent features for effective fire detection. The newly developed Ignited-Flames dataset is utilized to undertake a thorough analysis of several convolutional neural network (CNN) models. Additionally, the proposed FlameNet achieves 99.40% accuracy for fire detection. The empirical findings and analysis of multiple factors such as model accuracy, size, and processing time prove that the suggested model is suitable for fire detection." @default.
- W4386219772 created "2023-08-29" @default.
- W4386219772 creator A5016372759 @default.
- W4386219772 creator A5031881955 @default.
- W4386219772 creator A5032291620 @default.
- W4386219772 creator A5036220067 @default.
- W4386219772 creator A5051551488 @default.
- W4386219772 creator A5075314169 @default.
- W4386219772 creator A5075983792 @default.
- W4386219772 date "2023-08-28" @default.
- W4386219772 modified "2023-10-14" @default.
- W4386219772 title "Visual Intelligence in Smart Cities: A Lightweight Deep Learning Model for Fire Detection in an IoT Environment" @default.
- W4386219772 cites W1996199746 @default.
- W4386219772 cites W2050947613 @default.
- W4386219772 cites W2150266464 @default.
- W4386219772 cites W2531409750 @default.
- W4386219772 cites W2571300184 @default.
- W4386219772 cites W2751420734 @default.
- W4386219772 cites W2780222614 @default.
- W4386219772 cites W2783807918 @default.
- W4386219772 cites W2793947836 @default.
- W4386219772 cites W2807862495 @default.
- W4386219772 cites W2884585870 @default.
- W4386219772 cites W2913895065 @default.
- W4386219772 cites W2914296386 @default.
- W4386219772 cites W2939792156 @default.
- W4386219772 cites W2940390282 @default.
- W4386219772 cites W2942433350 @default.
- W4386219772 cites W2962523738 @default.
- W4386219772 cites W2963155258 @default.
- W4386219772 cites W2963294168 @default.
- W4386219772 cites W2964081807 @default.
- W4386219772 cites W2991110851 @default.
- W4386219772 cites W2998844432 @default.
- W4386219772 cites W3011462284 @default.
- W4386219772 cites W3036604424 @default.
- W4386219772 cites W3042654674 @default.
- W4386219772 cites W3047059304 @default.
- W4386219772 cites W3094290309 @default.
- W4386219772 cites W3105270602 @default.
- W4386219772 cites W3112123976 @default.
- W4386219772 cites W3116690515 @default.
- W4386219772 cites W3189757824 @default.
- W4386219772 cites W3205362470 @default.
- W4386219772 cites W3208697304 @default.
- W4386219772 cites W3216065183 @default.
- W4386219772 cites W4200207938 @default.
- W4386219772 cites W4220836661 @default.
- W4386219772 cites W4283811913 @default.
- W4386219772 cites W4291753147 @default.
- W4386219772 cites W4308097935 @default.
- W4386219772 cites W4319987537 @default.
- W4386219772 cites W4362514238 @default.
- W4386219772 cites W4379743944 @default.
- W4386219772 cites W4385577621 @default.
- W4386219772 cites W4385759809 @default.
- W4386219772 doi "https://doi.org/10.3390/smartcities6050103" @default.
- W4386219772 hasPublicationYear "2023" @default.
- W4386219772 type Work @default.
- W4386219772 citedByCount "0" @default.
- W4386219772 crossrefType "journal-article" @default.
- W4386219772 hasAuthorship W4386219772A5016372759 @default.
- W4386219772 hasAuthorship W4386219772A5031881955 @default.
- W4386219772 hasAuthorship W4386219772A5032291620 @default.
- W4386219772 hasAuthorship W4386219772A5036220067 @default.
- W4386219772 hasAuthorship W4386219772A5051551488 @default.
- W4386219772 hasAuthorship W4386219772A5075314169 @default.
- W4386219772 hasAuthorship W4386219772A5075983792 @default.
- W4386219772 hasBestOaLocation W43862197721 @default.
- W4386219772 hasConcept C108583219 @default.
- W4386219772 hasConcept C119857082 @default.
- W4386219772 hasConcept C127413603 @default.
- W4386219772 hasConcept C139502532 @default.
- W4386219772 hasConcept C154945302 @default.
- W4386219772 hasConcept C170154142 @default.
- W4386219772 hasConcept C201995342 @default.
- W4386219772 hasConcept C206345919 @default.
- W4386219772 hasConcept C2777103469 @default.
- W4386219772 hasConcept C2780451532 @default.
- W4386219772 hasConcept C2780836893 @default.
- W4386219772 hasConcept C31258907 @default.
- W4386219772 hasConcept C38652104 @default.
- W4386219772 hasConcept C41008148 @default.
- W4386219772 hasConcept C79403827 @default.
- W4386219772 hasConcept C81363708 @default.
- W4386219772 hasConcept C81860439 @default.
- W4386219772 hasConceptScore W4386219772C108583219 @default.
- W4386219772 hasConceptScore W4386219772C119857082 @default.
- W4386219772 hasConceptScore W4386219772C127413603 @default.
- W4386219772 hasConceptScore W4386219772C139502532 @default.
- W4386219772 hasConceptScore W4386219772C154945302 @default.
- W4386219772 hasConceptScore W4386219772C170154142 @default.
- W4386219772 hasConceptScore W4386219772C201995342 @default.
- W4386219772 hasConceptScore W4386219772C206345919 @default.
- W4386219772 hasConceptScore W4386219772C2777103469 @default.
- W4386219772 hasConceptScore W4386219772C2780451532 @default.
- W4386219772 hasConceptScore W4386219772C2780836893 @default.
- W4386219772 hasConceptScore W4386219772C31258907 @default.