Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386220105> ?p ?o ?g. }
- W4386220105 endingPage "6234" @default.
- W4386220105 startingPage "6234" @default.
- W4386220105 abstract "With the increase in population and the progress of industrialization, the rational use of energy in heating systems has become a research topic for many scholars. The accurate prediction of heat load in heating systems provides us with a scientific solution. Due to the complexity and difficulty of heat load forecasting in heating systems, this paper proposes a short-term heat load forecasting method based on a Bayesian algorithm-optimized long- and short-term memory network (BO-LSTM). The moving average data smoothing method is used to eliminate noise from the data. Pearson’s correlation analysis is used to determine the inputs to the model. Finally, the outdoor temperature and heat load of the previous period are selected as inputs to the model. The root mean square error (RMSE) is used as the main evaluation index, and the mean absolute error (MAE), mean bias error (MBE), and coefficient of determination (R2) are used as auxiliary evaluation indexes. It was found that the RMSE of the asynchronous length model decreased, proving the general practicability of the method. In conclusion, the proposed prediction method is simple and universal." @default.
- W4386220105 created "2023-08-29" @default.
- W4386220105 creator A5007139271 @default.
- W4386220105 creator A5024562006 @default.
- W4386220105 creator A5032091517 @default.
- W4386220105 creator A5069181198 @default.
- W4386220105 creator A5076841444 @default.
- W4386220105 date "2023-08-28" @default.
- W4386220105 modified "2023-09-30" @default.
- W4386220105 title "Bayesian Optimization-Based LSTM for Short-Term Heating Load Forecasting" @default.
- W4386220105 cites W1507639870 @default.
- W4386220105 cites W1980598759 @default.
- W4386220105 cites W2594787851 @default.
- W4386220105 cites W2756612914 @default.
- W4386220105 cites W2791111686 @default.
- W4386220105 cites W2796303798 @default.
- W4386220105 cites W2804243520 @default.
- W4386220105 cites W2810073813 @default.
- W4386220105 cites W2884378264 @default.
- W4386220105 cites W2912180703 @default.
- W4386220105 cites W2917365054 @default.
- W4386220105 cites W2921249715 @default.
- W4386220105 cites W2942035823 @default.
- W4386220105 cites W2990675463 @default.
- W4386220105 cites W3002098564 @default.
- W4386220105 cites W3004083925 @default.
- W4386220105 cites W3047538046 @default.
- W4386220105 cites W3089011108 @default.
- W4386220105 cites W3097542115 @default.
- W4386220105 cites W3099480097 @default.
- W4386220105 cites W3109872608 @default.
- W4386220105 cites W3115889371 @default.
- W4386220105 cites W3117041796 @default.
- W4386220105 cites W3138148122 @default.
- W4386220105 cites W3153157969 @default.
- W4386220105 cites W3193546170 @default.
- W4386220105 cites W3204709593 @default.
- W4386220105 cites W4205848391 @default.
- W4386220105 cites W4210483321 @default.
- W4386220105 cites W4213281528 @default.
- W4386220105 cites W4221102727 @default.
- W4386220105 cites W4283657752 @default.
- W4386220105 cites W4296301526 @default.
- W4386220105 cites W4307398891 @default.
- W4386220105 cites W4308451985 @default.
- W4386220105 cites W4321375393 @default.
- W4386220105 cites W4323663350 @default.
- W4386220105 cites W4360612715 @default.
- W4386220105 doi "https://doi.org/10.3390/en16176234" @default.
- W4386220105 hasPublicationYear "2023" @default.
- W4386220105 type Work @default.
- W4386220105 citedByCount "0" @default.
- W4386220105 crossrefType "journal-article" @default.
- W4386220105 hasAuthorship W4386220105A5007139271 @default.
- W4386220105 hasAuthorship W4386220105A5024562006 @default.
- W4386220105 hasAuthorship W4386220105A5032091517 @default.
- W4386220105 hasAuthorship W4386220105A5069181198 @default.
- W4386220105 hasAuthorship W4386220105A5076841444 @default.
- W4386220105 hasBestOaLocation W43862201051 @default.
- W4386220105 hasConcept C105795698 @default.
- W4386220105 hasConcept C107673813 @default.
- W4386220105 hasConcept C11413529 @default.
- W4386220105 hasConcept C121332964 @default.
- W4386220105 hasConcept C139945424 @default.
- W4386220105 hasConcept C144024400 @default.
- W4386220105 hasConcept C149923435 @default.
- W4386220105 hasConcept C154945302 @default.
- W4386220105 hasConcept C2908647359 @default.
- W4386220105 hasConcept C33923547 @default.
- W4386220105 hasConcept C41008148 @default.
- W4386220105 hasConcept C61797465 @default.
- W4386220105 hasConcept C62520636 @default.
- W4386220105 hasConceptScore W4386220105C105795698 @default.
- W4386220105 hasConceptScore W4386220105C107673813 @default.
- W4386220105 hasConceptScore W4386220105C11413529 @default.
- W4386220105 hasConceptScore W4386220105C121332964 @default.
- W4386220105 hasConceptScore W4386220105C139945424 @default.
- W4386220105 hasConceptScore W4386220105C144024400 @default.
- W4386220105 hasConceptScore W4386220105C149923435 @default.
- W4386220105 hasConceptScore W4386220105C154945302 @default.
- W4386220105 hasConceptScore W4386220105C2908647359 @default.
- W4386220105 hasConceptScore W4386220105C33923547 @default.
- W4386220105 hasConceptScore W4386220105C41008148 @default.
- W4386220105 hasConceptScore W4386220105C61797465 @default.
- W4386220105 hasConceptScore W4386220105C62520636 @default.
- W4386220105 hasIssue "17" @default.
- W4386220105 hasLocation W43862201051 @default.
- W4386220105 hasOpenAccess W4386220105 @default.
- W4386220105 hasPrimaryLocation W43862201051 @default.
- W4386220105 hasRelatedWork W106751956 @default.
- W4386220105 hasRelatedWork W1521430992 @default.
- W4386220105 hasRelatedWork W2061907162 @default.
- W4386220105 hasRelatedWork W2119158312 @default.
- W4386220105 hasRelatedWork W2386767533 @default.
- W4386220105 hasRelatedWork W2552050053 @default.
- W4386220105 hasRelatedWork W2918677219 @default.
- W4386220105 hasRelatedWork W2957914464 @default.
- W4386220105 hasRelatedWork W309072737 @default.