Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386220387> ?p ?o ?g. }
- W4386220387 endingPage "1012" @default.
- W4386220387 startingPage "1012" @default.
- W4386220387 abstract "Magnetic Resonance Imaging (MRI) is an essential medical imaging modality that provides excellent soft-tissue contrast and high-resolution images of the human body, allowing us to understand detailed information on morphology, structural integrity, and physiologic processes. However, MRI exams usually require lengthy acquisition times. Methods such as parallel MRI and Compressive Sensing (CS) have significantly reduced the MRI acquisition time by acquiring less data through undersampling k-space. The state-of-the-art of fast MRI has recently been redefined by integrating Deep Learning (DL) models with these undersampled approaches. This Systematic Literature Review (SLR) comprehensively analyzes deep MRI reconstruction models, emphasizing the key elements of recently proposed methods and highlighting their strengths and weaknesses. This SLR involves searching and selecting relevant studies from various databases, including Web of Science and Scopus, followed by a rigorous screening and data extraction process using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. It focuses on various techniques, such as residual learning, image representation using encoders and decoders, data-consistency layers, unrolled networks, learned activations, attention modules, plug-and-play priors, diffusion models, and Bayesian methods. This SLR also discusses the use of loss functions and training with adversarial networks to enhance deep MRI reconstruction methods. Moreover, we explore various MRI reconstruction applications, including non-Cartesian reconstruction, super-resolution, dynamic MRI, joint learning of reconstruction with coil sensitivity and sampling, quantitative mapping, and MR fingerprinting. This paper also addresses research questions, provides insights for future directions, and emphasizes robust generalization and artifact handling. Therefore, this SLR serves as a valuable resource for advancing fast MRI, guiding research and development efforts of MRI reconstruction for better image quality and faster data acquisition." @default.
- W4386220387 created "2023-08-29" @default.
- W4386220387 creator A5010244048 @default.
- W4386220387 creator A5011588824 @default.
- W4386220387 creator A5013150230 @default.
- W4386220387 creator A5039838239 @default.
- W4386220387 creator A5062510795 @default.
- W4386220387 creator A5077016662 @default.
- W4386220387 date "2023-08-26" @default.
- W4386220387 modified "2023-10-17" @default.
- W4386220387 title "Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review" @default.
- W4386220387 cites W1593077517 @default.
- W4386220387 cites W1867572349 @default.
- W4386220387 cites W1999584433 @default.
- W4386220387 cites W2006330194 @default.
- W4386220387 cites W2014547837 @default.
- W4386220387 cites W2032038095 @default.
- W4386220387 cites W2047544187 @default.
- W4386220387 cites W2069841732 @default.
- W4386220387 cites W2080486838 @default.
- W4386220387 cites W2087332491 @default.
- W4386220387 cites W2101374770 @default.
- W4386220387 cites W2111388536 @default.
- W4386220387 cites W2117649283 @default.
- W4386220387 cites W2133665775 @default.
- W4386220387 cites W2136352567 @default.
- W4386220387 cites W2556214332 @default.
- W4386220387 cites W2604388535 @default.
- W4386220387 cites W2610522009 @default.
- W4386220387 cites W2778924750 @default.
- W4386220387 cites W2785239769 @default.
- W4386220387 cites W2791621240 @default.
- W4386220387 cites W2791749046 @default.
- W4386220387 cites W2794977498 @default.
- W4386220387 cites W2795380527 @default.
- W4386220387 cites W2805701966 @default.
- W4386220387 cites W2807184855 @default.
- W4386220387 cites W2883939028 @default.
- W4386220387 cites W2889995282 @default.
- W4386220387 cites W2891118307 @default.
- W4386220387 cites W2907696891 @default.
- W4386220387 cites W2914314139 @default.
- W4386220387 cites W2922270091 @default.
- W4386220387 cites W2928045706 @default.
- W4386220387 cites W2942354470 @default.
- W4386220387 cites W2953427271 @default.
- W4386220387 cites W2953977469 @default.
- W4386220387 cites W2955007765 @default.
- W4386220387 cites W2956087734 @default.
- W4386220387 cites W2956625312 @default.
- W4386220387 cites W2962996460 @default.
- W4386220387 cites W2963828828 @default.
- W4386220387 cites W2964293140 @default.
- W4386220387 cites W2964859579 @default.
- W4386220387 cites W2969785455 @default.
- W4386220387 cites W2978392370 @default.
- W4386220387 cites W2979430738 @default.
- W4386220387 cites W2980661051 @default.
- W4386220387 cites W2991630443 @default.
- W4386220387 cites W2994844425 @default.
- W4386220387 cites W2995286437 @default.
- W4386220387 cites W2995396522 @default.
- W4386220387 cites W2997222478 @default.
- W4386220387 cites W2998376473 @default.
- W4386220387 cites W2999409265 @default.
- W4386220387 cites W3001319253 @default.
- W4386220387 cites W3001554227 @default.
- W4386220387 cites W3004715589 @default.
- W4386220387 cites W3005709683 @default.
- W4386220387 cites W3005910264 @default.
- W4386220387 cites W3009324850 @default.
- W4386220387 cites W3009994569 @default.
- W4386220387 cites W3011787089 @default.
- W4386220387 cites W3013102563 @default.
- W4386220387 cites W3015686011 @default.
- W4386220387 cites W3022091210 @default.
- W4386220387 cites W3022291895 @default.
- W4386220387 cites W3022492627 @default.
- W4386220387 cites W3028078843 @default.
- W4386220387 cites W3031962481 @default.
- W4386220387 cites W3034223847 @default.
- W4386220387 cites W3034546843 @default.
- W4386220387 cites W3035596626 @default.
- W4386220387 cites W3039236647 @default.
- W4386220387 cites W3041018972 @default.
- W4386220387 cites W3043231745 @default.
- W4386220387 cites W3045099931 @default.
- W4386220387 cites W3047239282 @default.
- W4386220387 cites W3048384642 @default.
- W4386220387 cites W3080851077 @default.
- W4386220387 cites W3082617497 @default.
- W4386220387 cites W3084719027 @default.
- W4386220387 cites W3085727380 @default.
- W4386220387 cites W3087925883 @default.
- W4386220387 cites W3092596753 @default.
- W4386220387 cites W3093125726 @default.
- W4386220387 cites W3096793576 @default.
- W4386220387 cites W3098020164 @default.