Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386220607> ?p ?o ?g. }
- W4386220607 endingPage "3690" @default.
- W4386220607 startingPage "3690" @default.
- W4386220607 abstract "The problem of finding key players in a graph, also known as network dismantling, or network disintegration, aims to find an optimal removal sequence of nodes (edges, substructures) through a certain algorithm, ultimately causing functional indicators such as the largest connected component (GCC) or network pair connectivity in the graph to rapidly decline. As a typical NP-hard problem on graphs, recent methods based on reinforcement learning and graph representation learning have effectively solved such problems. However, existing reinforcement-learning-based key-player-identification algorithms often need to remove too many nodes in order to achieve the optimal effect when removing the remaining network until no connected edges remain. The use of a minimum number of nodes while maintaining or surpassing the performance of existing methods is a worthwhile research problem. To this end, a novel algorithm called MiniKey was proposed to tackle such challenges, which employs a specific deep Q-network architecture for reinforcement learning, a novel reward-shaping mechanism based on network functional indicators, and the graph-embedding technique GraphSage to transform network nodes into latent representations. Additionally, a technique dubbed ‘virtual node technology’ is integrated to grasp the overarching feature representation of the whole network. This innovative algorithm can be effectively trained on small-scale simulated graphs while also being scalable to large-scale real-world networks. Importantly, experiments from both six simulated datasets and six real-world datasets demonstrates that MiniKey can achieve optimal performance, striking a perfect balance between the effectiveness of key node identification and the minimization of the number of nodes that is utilized, which holds potential for real-world applications such as curbing misinformation spread in social networks, optimizing traffic in transportation systems, and identifying key targets in biological networks for targeted interventions." @default.
- W4386220607 created "2023-08-29" @default.
- W4386220607 creator A5012674271 @default.
- W4386220607 creator A5043995466 @default.
- W4386220607 creator A5056248574 @default.
- W4386220607 date "2023-08-28" @default.
- W4386220607 modified "2023-09-30" @default.
- W4386220607 title "Leveraging Minimum Nodes for Optimum Key Player Identification in Complex Networks: A Deep Reinforcement Learning Strategy with Structured Reward Shaping" @default.
- W4386220607 cites W1429530505 @default.
- W4386220607 cites W1931400479 @default.
- W4386220607 cites W1967385589 @default.
- W4386220607 cites W1985953075 @default.
- W4386220607 cites W1987725948 @default.
- W4386220607 cites W2001250270 @default.
- W4386220607 cites W2010280523 @default.
- W4386220607 cites W2025844353 @default.
- W4386220607 cites W2079447226 @default.
- W4386220607 cites W2105535951 @default.
- W4386220607 cites W2111347279 @default.
- W4386220607 cites W2121035174 @default.
- W4386220607 cites W2143698439 @default.
- W4386220607 cites W2145339207 @default.
- W4386220607 cites W2162275416 @default.
- W4386220607 cites W2162808198 @default.
- W4386220607 cites W2531229959 @default.
- W4386220607 cites W2572289316 @default.
- W4386220607 cites W2754477474 @default.
- W4386220607 cites W2782195772 @default.
- W4386220607 cites W2792824988 @default.
- W4386220607 cites W2889920478 @default.
- W4386220607 cites W2890157847 @default.
- W4386220607 cites W2916457740 @default.
- W4386220607 cites W2950600822 @default.
- W4386220607 cites W2964358315 @default.
- W4386220607 cites W3028110392 @default.
- W4386220607 cites W3031880032 @default.
- W4386220607 cites W3046197868 @default.
- W4386220607 cites W3100777813 @default.
- W4386220607 cites W3103071483 @default.
- W4386220607 cites W3103589963 @default.
- W4386220607 cites W4304631547 @default.
- W4386220607 cites W4319737165 @default.
- W4386220607 doi "https://doi.org/10.3390/math11173690" @default.
- W4386220607 hasPublicationYear "2023" @default.
- W4386220607 type Work @default.
- W4386220607 citedByCount "0" @default.
- W4386220607 crossrefType "journal-article" @default.
- W4386220607 hasAuthorship W4386220607A5012674271 @default.
- W4386220607 hasAuthorship W4386220607A5043995466 @default.
- W4386220607 hasAuthorship W4386220607A5056248574 @default.
- W4386220607 hasBestOaLocation W43862206071 @default.
- W4386220607 hasConcept C116834253 @default.
- W4386220607 hasConcept C119857082 @default.
- W4386220607 hasConcept C127413603 @default.
- W4386220607 hasConcept C132525143 @default.
- W4386220607 hasConcept C154945302 @default.
- W4386220607 hasConcept C171268870 @default.
- W4386220607 hasConcept C199360897 @default.
- W4386220607 hasConcept C26517878 @default.
- W4386220607 hasConcept C38652104 @default.
- W4386220607 hasConcept C41008148 @default.
- W4386220607 hasConcept C41608201 @default.
- W4386220607 hasConcept C48044578 @default.
- W4386220607 hasConcept C59822182 @default.
- W4386220607 hasConcept C62611344 @default.
- W4386220607 hasConcept C66938386 @default.
- W4386220607 hasConcept C77088390 @default.
- W4386220607 hasConcept C80444323 @default.
- W4386220607 hasConcept C86803240 @default.
- W4386220607 hasConcept C97541855 @default.
- W4386220607 hasConceptScore W4386220607C116834253 @default.
- W4386220607 hasConceptScore W4386220607C119857082 @default.
- W4386220607 hasConceptScore W4386220607C127413603 @default.
- W4386220607 hasConceptScore W4386220607C132525143 @default.
- W4386220607 hasConceptScore W4386220607C154945302 @default.
- W4386220607 hasConceptScore W4386220607C171268870 @default.
- W4386220607 hasConceptScore W4386220607C199360897 @default.
- W4386220607 hasConceptScore W4386220607C26517878 @default.
- W4386220607 hasConceptScore W4386220607C38652104 @default.
- W4386220607 hasConceptScore W4386220607C41008148 @default.
- W4386220607 hasConceptScore W4386220607C41608201 @default.
- W4386220607 hasConceptScore W4386220607C48044578 @default.
- W4386220607 hasConceptScore W4386220607C59822182 @default.
- W4386220607 hasConceptScore W4386220607C62611344 @default.
- W4386220607 hasConceptScore W4386220607C66938386 @default.
- W4386220607 hasConceptScore W4386220607C77088390 @default.
- W4386220607 hasConceptScore W4386220607C80444323 @default.
- W4386220607 hasConceptScore W4386220607C86803240 @default.
- W4386220607 hasConceptScore W4386220607C97541855 @default.
- W4386220607 hasIssue "17" @default.
- W4386220607 hasLocation W43862206071 @default.
- W4386220607 hasOpenAccess W4386220607 @default.
- W4386220607 hasPrimaryLocation W43862206071 @default.
- W4386220607 hasRelatedWork W1564481417 @default.
- W4386220607 hasRelatedWork W2405379563 @default.
- W4386220607 hasRelatedWork W2951545510 @default.
- W4386220607 hasRelatedWork W3035116611 @default.
- W4386220607 hasRelatedWork W3207688490 @default.