Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386222863> ?p ?o ?g. }
- W4386222863 endingPage "3552" @default.
- W4386222863 startingPage "3552" @default.
- W4386222863 abstract "The relaxation time and frequency spectra are vital for constitutive models and for insight into the viscoelastic properties of polymers, since, from the spectra, other material functions used to describe rheological properties of various polymers can be uniquely determined. In recent decades the non-integer order differential equations have attracted interest in the description of time-dependent processes concerning relaxation phenomena. The fractional Maxwell model (FMM) is probably the most known rheological model of non-integer order. However, the FMM spectrum has not yet been studied and used to describe rheological materials. Therefore, the goal of the present paper was to study the applicability of the relaxation spectrum of FMM to the description of the relaxation spectra of polymers. Based on the known integral representation of the Mittag-Leffler two-parameter function, analytical formulas describing relaxation time and frequency spectra of FMM model were derived. Monotonicity of the spectra was analyzed and asymptotic properties were established. Relaxation frequency spectrum grows for large frequencies with a positive power law, while the relaxation time spectrum decays for large times with a negative power of time. Necessary and sufficient conditions for the existence of the local extrema of the relaxation spectra were derived in the form of two trigonometric inequalities. A simple procedure for checking the existence or absence of the spectra extrema was developed. Direct analytical formulas for the local extrema, minima, and maxima are given in terms of model fractional and viscoelastic parameters. The fractional model parameters, non-integer orders of the stress and strain derivatives of FMM uniquely determine the existence of the spectrum extrema. However, the viscoelastic parameters of the FMM, elastic modulus, and relaxation time affect the maxima and minima of the relaxation spectra and the values of their local peaks. The influence of model parameters on their local extrema was examined. Next, the applicability of the continuous–discrete spectrum of FMM to describe Baumgaertel, Schausberger and Winter (BSW) and unimodal Gauss-like relaxation spectra, commonly used to describe rheological properties of various polymers, was examined. Numerical experiments have shown that by respective choice of the FMM parameters, in particular by respective choice of the orders of fractional derivatives of the stress and strain, a good fit for the relaxation modulus experiment data was obtained for polymers characterized both by BSW and Gauss-like relaxation spectra. As a result, a good approximation of the real spectra was reached. Thus, the viscoelastic relaxation spectrum of FMM, due to the availability of the two extra degrees of freedom (non-integer orders of the stress and strain derivatives), provides deep insights into the complex behavior of polymers and can be applied for a wide class of polymers with unimodal relaxation spectra." @default.
- W4386222863 created "2023-08-29" @default.
- W4386222863 creator A5007893155 @default.
- W4386222863 date "2023-08-26" @default.
- W4386222863 modified "2023-10-02" @default.
- W4386222863 title "On Applicability of the Relaxation Spectrum of Fractional Maxwell Model to Description of Unimodal Relaxation Spectra of Polymers" @default.
- W4386222863 cites W1528987510 @default.
- W4386222863 cites W1594298157 @default.
- W4386222863 cites W1971249019 @default.
- W4386222863 cites W1974687928 @default.
- W4386222863 cites W1994639424 @default.
- W4386222863 cites W1995584133 @default.
- W4386222863 cites W2011762279 @default.
- W4386222863 cites W2012693091 @default.
- W4386222863 cites W2015260916 @default.
- W4386222863 cites W2015583139 @default.
- W4386222863 cites W2021132741 @default.
- W4386222863 cites W2023877032 @default.
- W4386222863 cites W2042003270 @default.
- W4386222863 cites W2047953417 @default.
- W4386222863 cites W2052963592 @default.
- W4386222863 cites W2058091127 @default.
- W4386222863 cites W2059363345 @default.
- W4386222863 cites W2069664372 @default.
- W4386222863 cites W2094168524 @default.
- W4386222863 cites W2105058408 @default.
- W4386222863 cites W2113155764 @default.
- W4386222863 cites W2132847263 @default.
- W4386222863 cites W2144815200 @default.
- W4386222863 cites W2153393410 @default.
- W4386222863 cites W2272563708 @default.
- W4386222863 cites W2318852747 @default.
- W4386222863 cites W2398775075 @default.
- W4386222863 cites W2523044984 @default.
- W4386222863 cites W2547959705 @default.
- W4386222863 cites W2619871602 @default.
- W4386222863 cites W2752596483 @default.
- W4386222863 cites W2789720660 @default.
- W4386222863 cites W2937486991 @default.
- W4386222863 cites W2955080978 @default.
- W4386222863 cites W3001145377 @default.
- W4386222863 cites W3010749250 @default.
- W4386222863 cites W3118558556 @default.
- W4386222863 cites W3122508512 @default.
- W4386222863 cites W3130508278 @default.
- W4386222863 cites W3175288985 @default.
- W4386222863 cites W4225122415 @default.
- W4386222863 cites W4230518916 @default.
- W4386222863 cites W4239838448 @default.
- W4386222863 cites W4293200410 @default.
- W4386222863 cites W4296204786 @default.
- W4386222863 cites W4296743047 @default.
- W4386222863 cites W4296836639 @default.
- W4386222863 cites W4304084066 @default.
- W4386222863 cites W4308743680 @default.
- W4386222863 cites W4320918169 @default.
- W4386222863 cites W4366262887 @default.
- W4386222863 cites W4376630790 @default.
- W4386222863 doi "https://doi.org/10.3390/polym15173552" @default.
- W4386222863 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37688179" @default.
- W4386222863 hasPublicationYear "2023" @default.
- W4386222863 type Work @default.
- W4386222863 citedByCount "0" @default.
- W4386222863 crossrefType "journal-article" @default.
- W4386222863 hasAuthorship W4386222863A5007893155 @default.
- W4386222863 hasBestOaLocation W43862228631 @default.
- W4386222863 hasConcept C121332964 @default.
- W4386222863 hasConcept C121864883 @default.
- W4386222863 hasConcept C134306372 @default.
- W4386222863 hasConcept C149912024 @default.
- W4386222863 hasConcept C154249771 @default.
- W4386222863 hasConcept C15744967 @default.
- W4386222863 hasConcept C186541917 @default.
- W4386222863 hasConcept C186633575 @default.
- W4386222863 hasConcept C199360897 @default.
- W4386222863 hasConcept C202974441 @default.
- W4386222863 hasConcept C2776029896 @default.
- W4386222863 hasConcept C33923547 @default.
- W4386222863 hasConcept C41008148 @default.
- W4386222863 hasConcept C4839761 @default.
- W4386222863 hasConcept C62520636 @default.
- W4386222863 hasConcept C77805123 @default.
- W4386222863 hasConcept C97137487 @default.
- W4386222863 hasConcept C97355855 @default.
- W4386222863 hasConceptScore W4386222863C121332964 @default.
- W4386222863 hasConceptScore W4386222863C121864883 @default.
- W4386222863 hasConceptScore W4386222863C134306372 @default.
- W4386222863 hasConceptScore W4386222863C149912024 @default.
- W4386222863 hasConceptScore W4386222863C154249771 @default.
- W4386222863 hasConceptScore W4386222863C15744967 @default.
- W4386222863 hasConceptScore W4386222863C186541917 @default.
- W4386222863 hasConceptScore W4386222863C186633575 @default.
- W4386222863 hasConceptScore W4386222863C199360897 @default.
- W4386222863 hasConceptScore W4386222863C202974441 @default.
- W4386222863 hasConceptScore W4386222863C2776029896 @default.
- W4386222863 hasConceptScore W4386222863C33923547 @default.
- W4386222863 hasConceptScore W4386222863C41008148 @default.
- W4386222863 hasConceptScore W4386222863C4839761 @default.