Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386223632> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4386223632 endingPage "7458" @default.
- W4386223632 startingPage "7458" @default.
- W4386223632 abstract "The nine-axis inertial and measurement unit (IMU)-based three-dimensional (3D) orientation estimation is a fundamental part of inertial motion capture. Recently, owing to the successful utilization of deep learning in various applications, orientation estimation neural networks (NNs) trained on large datasets, including nine-axis IMU signals and reference orientation data, have been developed. During the training process, the limited amount of training data is a critical issue in the development of powerful networks. Data augmentation, which increases the amount of training data, is a key approach for addressing the data shortage problem and thus for improving the estimation performance. However, to the best of our knowledge, no studies have been conducted to analyze the effects of data augmentation techniques on estimation performance in orientation estimation networks using IMU sensors. This paper selects three data augmentation techniques for IMU-based orientation estimation NNs, i.e., augmentation by virtual rotation, bias addition, and noise addition (which are hereafter referred to as rotation, bias, and noise, respectively). Then, this paper analyzes the effects of these augmentation techniques on estimation accuracy in recurrent neural networks, for a total of seven combinations (i.e., rotation only, bias only, noise only, rotation and bias, rotation and noise, and rotation and bias and noise). The evaluation results show that, among a total of seven augmentation cases, four cases including ‘rotation’ (i.e., rotation only, rotation and bias, rotation and noise, and rotation and bias and noise) occupy the top four. Therefore, it may be concluded that the augmentation effect of rotation is overwhelming compared to those of bias and noise. By applying rotation augmentation, the performance of the NN can be significantly improved. The analysis of the effect of the data augmentation techniques presented in this paper may provide insights for developing robust IMU-based orientation estimation networks." @default.
- W4386223632 created "2023-08-29" @default.
- W4386223632 creator A5013879707 @default.
- W4386223632 creator A5048067707 @default.
- W4386223632 date "2023-08-28" @default.
- W4386223632 modified "2023-09-27" @default.
- W4386223632 title "Effects of Data Augmentation on the Nine-Axis IMU-Based Orientation Estimation Accuracy of a Recurrent Neural Network" @default.
- W4386223632 cites W1975198239 @default.
- W4386223632 cites W2160146756 @default.
- W4386223632 cites W2161872204 @default.
- W4386223632 cites W2169061036 @default.
- W4386223632 cites W2199469138 @default.
- W4386223632 cites W2412782625 @default.
- W4386223632 cites W2742229469 @default.
- W4386223632 cites W2763008529 @default.
- W4386223632 cites W2896938208 @default.
- W4386223632 cites W2901062485 @default.
- W4386223632 cites W2912664220 @default.
- W4386223632 cites W2945183598 @default.
- W4386223632 cites W2954996726 @default.
- W4386223632 cites W2963587345 @default.
- W4386223632 cites W2964054038 @default.
- W4386223632 cites W2964199361 @default.
- W4386223632 cites W2971296908 @default.
- W4386223632 cites W2998370018 @default.
- W4386223632 cites W2999650538 @default.
- W4386223632 cites W3006436762 @default.
- W4386223632 cites W3102431071 @default.
- W4386223632 cites W3115237034 @default.
- W4386223632 cites W3129756265 @default.
- W4386223632 cites W3153542184 @default.
- W4386223632 cites W3173631815 @default.
- W4386223632 cites W3174828871 @default.
- W4386223632 cites W3176923149 @default.
- W4386223632 cites W3177192739 @default.
- W4386223632 cites W3192593361 @default.
- W4386223632 cites W3201189310 @default.
- W4386223632 cites W4205542429 @default.
- W4386223632 cites W4220883345 @default.
- W4386223632 cites W4292888456 @default.
- W4386223632 cites W4311627440 @default.
- W4386223632 doi "https://doi.org/10.3390/s23177458" @default.
- W4386223632 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37687915" @default.
- W4386223632 hasPublicationYear "2023" @default.
- W4386223632 type Work @default.
- W4386223632 citedByCount "0" @default.
- W4386223632 crossrefType "journal-article" @default.
- W4386223632 hasAuthorship W4386223632A5013879707 @default.
- W4386223632 hasAuthorship W4386223632A5048067707 @default.
- W4386223632 hasBestOaLocation W43862236321 @default.
- W4386223632 hasConcept C115961682 @default.
- W4386223632 hasConcept C154945302 @default.
- W4386223632 hasConcept C16345878 @default.
- W4386223632 hasConcept C2524010 @default.
- W4386223632 hasConcept C31972630 @default.
- W4386223632 hasConcept C33923547 @default.
- W4386223632 hasConcept C41008148 @default.
- W4386223632 hasConcept C50644808 @default.
- W4386223632 hasConcept C74050887 @default.
- W4386223632 hasConcept C79061980 @default.
- W4386223632 hasConcept C99498987 @default.
- W4386223632 hasConceptScore W4386223632C115961682 @default.
- W4386223632 hasConceptScore W4386223632C154945302 @default.
- W4386223632 hasConceptScore W4386223632C16345878 @default.
- W4386223632 hasConceptScore W4386223632C2524010 @default.
- W4386223632 hasConceptScore W4386223632C31972630 @default.
- W4386223632 hasConceptScore W4386223632C33923547 @default.
- W4386223632 hasConceptScore W4386223632C41008148 @default.
- W4386223632 hasConceptScore W4386223632C50644808 @default.
- W4386223632 hasConceptScore W4386223632C74050887 @default.
- W4386223632 hasConceptScore W4386223632C79061980 @default.
- W4386223632 hasConceptScore W4386223632C99498987 @default.
- W4386223632 hasIssue "17" @default.
- W4386223632 hasLocation W43862236321 @default.
- W4386223632 hasLocation W43862236322 @default.
- W4386223632 hasOpenAccess W4386223632 @default.
- W4386223632 hasPrimaryLocation W43862236321 @default.
- W4386223632 hasRelatedWork W1996490590 @default.
- W4386223632 hasRelatedWork W2112002268 @default.
- W4386223632 hasRelatedWork W2295869952 @default.
- W4386223632 hasRelatedWork W2613852343 @default.
- W4386223632 hasRelatedWork W2766932195 @default.
- W4386223632 hasRelatedWork W3003695190 @default.
- W4386223632 hasRelatedWork W4205657394 @default.
- W4386223632 hasRelatedWork W4285265093 @default.
- W4386223632 hasRelatedWork W4315750480 @default.
- W4386223632 hasRelatedWork W4383748483 @default.
- W4386223632 hasVolume "23" @default.
- W4386223632 isParatext "false" @default.
- W4386223632 isRetracted "false" @default.
- W4386223632 workType "article" @default.