Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386225847> ?p ?o ?g. }
- W4386225847 endingPage "114000" @default.
- W4386225847 startingPage "114000" @default.
- W4386225847 abstract "Excessive pesticide use poses a significant threat to food safety. Rapid on-site detection of multi-target pesticide residues in vegetables is crucial due to their widespread distribution and limited shelf life. In this study, a rapid on-site screening method for pesticide residues on vegetable surfaces was developed by employing a miniature mass spectrometer. A direct pretreatment method involves placing vegetables and elution solution into a customized flexible ziplock bag, allowing thorough mixing, washing, and filtration. This process effectively removes pesticide residues from vegetable surfaces with minimal organic solvent usage and can be completed within 2 min. Moreover, this study introduced a deep learning algorithm based on a one-dimensional convolutional neural network, coupled with a feature database, to autonomously discriminate detection outcomes. By combining full scan MS and tandem MS analysis methods, the proposed method achieved a qualitative recognition accuracy of 99.62%. Following the qualitative discrimination stage, the target pesticide residue and internal standard can be simultaneously isolated and fragmented in the ion trap, thus enabling on-site quantitative analysis and warning. This method achieved a quantitative detection limit of 10 μg/kg for carbendazim in cowpea. These results demonstrate the feasibility of the proposed analytical system and strategy in food safety applications." @default.
- W4386225847 created "2023-08-29" @default.
- W4386225847 creator A5024099496 @default.
- W4386225847 creator A5027364857 @default.
- W4386225847 creator A5032912483 @default.
- W4386225847 creator A5033963041 @default.
- W4386225847 creator A5038734215 @default.
- W4386225847 creator A5047088645 @default.
- W4386225847 creator A5054132827 @default.
- W4386225847 creator A5074311174 @default.
- W4386225847 creator A5086677714 @default.
- W4386225847 date "2023-10-01" @default.
- W4386225847 modified "2023-10-08" @default.
- W4386225847 title "Deep learning enabled miniature mass spectrometer for rapid qualitative and quantitative analysis of pesticides on vegetable surfaces" @default.
- W4386225847 cites W1857109912 @default.
- W4386225847 cites W1968682755 @default.
- W4386225847 cites W1977737260 @default.
- W4386225847 cites W2019476102 @default.
- W4386225847 cites W2035112507 @default.
- W4386225847 cites W2049916088 @default.
- W4386225847 cites W2057759922 @default.
- W4386225847 cites W2081742599 @default.
- W4386225847 cites W2105126509 @default.
- W4386225847 cites W2112402070 @default.
- W4386225847 cites W2281606036 @default.
- W4386225847 cites W2327762909 @default.
- W4386225847 cites W2431249095 @default.
- W4386225847 cites W2574552298 @default.
- W4386225847 cites W2742124344 @default.
- W4386225847 cites W2754207897 @default.
- W4386225847 cites W2772103272 @default.
- W4386225847 cites W2781734340 @default.
- W4386225847 cites W2795342892 @default.
- W4386225847 cites W2805026351 @default.
- W4386225847 cites W2913309841 @default.
- W4386225847 cites W2945192423 @default.
- W4386225847 cites W2955396395 @default.
- W4386225847 cites W2962030253 @default.
- W4386225847 cites W2974656623 @default.
- W4386225847 cites W2996469371 @default.
- W4386225847 cites W3001776252 @default.
- W4386225847 cites W3120391460 @default.
- W4386225847 cites W3138121795 @default.
- W4386225847 cites W3214508492 @default.
- W4386225847 cites W4200418489 @default.
- W4386225847 cites W4221079217 @default.
- W4386225847 cites W4280565936 @default.
- W4386225847 cites W4302773608 @default.
- W4386225847 cites W4313679374 @default.
- W4386225847 cites W4316363559 @default.
- W4386225847 cites W4318473311 @default.
- W4386225847 cites W4361293954 @default.
- W4386225847 cites W910709070 @default.
- W4386225847 doi "https://doi.org/10.1016/j.fct.2023.114000" @default.
- W4386225847 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37648105" @default.
- W4386225847 hasPublicationYear "2023" @default.
- W4386225847 type Work @default.
- W4386225847 citedByCount "0" @default.
- W4386225847 crossrefType "journal-article" @default.
- W4386225847 hasAuthorship W4386225847A5024099496 @default.
- W4386225847 hasAuthorship W4386225847A5027364857 @default.
- W4386225847 hasAuthorship W4386225847A5032912483 @default.
- W4386225847 hasAuthorship W4386225847A5033963041 @default.
- W4386225847 hasAuthorship W4386225847A5038734215 @default.
- W4386225847 hasAuthorship W4386225847A5047088645 @default.
- W4386225847 hasAuthorship W4386225847A5054132827 @default.
- W4386225847 hasAuthorship W4386225847A5074311174 @default.
- W4386225847 hasAuthorship W4386225847A5086677714 @default.
- W4386225847 hasConcept C106848363 @default.
- W4386225847 hasConcept C107872376 @default.
- W4386225847 hasConcept C119128265 @default.
- W4386225847 hasConcept C144024400 @default.
- W4386225847 hasConcept C153180895 @default.
- W4386225847 hasConcept C154945302 @default.
- W4386225847 hasConcept C161176658 @default.
- W4386225847 hasConcept C185592680 @default.
- W4386225847 hasConcept C190248442 @default.
- W4386225847 hasConcept C2778226232 @default.
- W4386225847 hasConcept C3018587665 @default.
- W4386225847 hasConcept C31903555 @default.
- W4386225847 hasConcept C36289849 @default.
- W4386225847 hasConcept C39432304 @default.
- W4386225847 hasConcept C41008148 @default.
- W4386225847 hasConcept C43617362 @default.
- W4386225847 hasConcept C516717267 @default.
- W4386225847 hasConcept C6557445 @default.
- W4386225847 hasConcept C86803240 @default.
- W4386225847 hasConceptScore W4386225847C106848363 @default.
- W4386225847 hasConceptScore W4386225847C107872376 @default.
- W4386225847 hasConceptScore W4386225847C119128265 @default.
- W4386225847 hasConceptScore W4386225847C144024400 @default.
- W4386225847 hasConceptScore W4386225847C153180895 @default.
- W4386225847 hasConceptScore W4386225847C154945302 @default.
- W4386225847 hasConceptScore W4386225847C161176658 @default.
- W4386225847 hasConceptScore W4386225847C185592680 @default.
- W4386225847 hasConceptScore W4386225847C190248442 @default.
- W4386225847 hasConceptScore W4386225847C2778226232 @default.
- W4386225847 hasConceptScore W4386225847C3018587665 @default.