Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386230157> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4386230157 endingPage "767" @default.
- W4386230157 startingPage "755" @default.
- W4386230157 abstract "The efficient analysis of digital mammograms has an important role in the early detection of breast cancer and can lead to a higher percentage of recovery. The process of mammogram classification can be divided into two steps as follows: first, it has to be established if the tissue contains abnormalities, and, second, the nature of the lesion has to be determined. This second step of a computer-aided diagnosis system is important in order to select the best treatment for the patient and to achieve the highest chance of recovery. In general, digital mammogram analysis consists of preprocessing, feature extraction, feature selection and classification. Feature extraction is crucial in identifying informative characteristics that can differentiate between benign and malignant lesions. The two main types of feature extraction methods are shape features and texture features. In the current paper, we present several experiments in order to compare the performance of different feature extraction methods from the two types mentioned previously. As data, images from the Digital Database for Screening Mammography (DDSM) are used, which has precise ground truth for the cancerous tissue. For classification Decision Trees and Random Forest methods are used to evaluate the performance using the different extracted features. The experiments that were carried out show that shape features perform better than texture features to separate benign and malignant abnormalities. Also, some outliers were found causing a decrease in the accuracy of the system and achieving 66% test accuracy using shape features and Random Forest classifier." @default.
- W4386230157 created "2023-08-29" @default.
- W4386230157 creator A5009798916 @default.
- W4386230157 creator A5082737372 @default.
- W4386230157 date "2023-01-01" @default.
- W4386230157 modified "2023-09-30" @default.
- W4386230157 title "Textural and Shape Features for Lesion Classification in Mammogram Analysis" @default.
- W4386230157 cites W2606880313 @default.
- W4386230157 cites W2787841985 @default.
- W4386230157 cites W2899844231 @default.
- W4386230157 cites W3010769727 @default.
- W4386230157 cites W3012373848 @default.
- W4386230157 cites W3030255819 @default.
- W4386230157 cites W3111749256 @default.
- W4386230157 cites W3200482775 @default.
- W4386230157 cites W3201720912 @default.
- W4386230157 cites W41027960 @default.
- W4386230157 cites W4205560203 @default.
- W4386230157 cites W4288431708 @default.
- W4386230157 cites W4378220592 @default.
- W4386230157 doi "https://doi.org/10.1007/978-3-031-40725-3_64" @default.
- W4386230157 hasPublicationYear "2023" @default.
- W4386230157 type Work @default.
- W4386230157 citedByCount "0" @default.
- W4386230157 crossrefType "book-chapter" @default.
- W4386230157 hasAuthorship W4386230157A5009798916 @default.
- W4386230157 hasAuthorship W4386230157A5082737372 @default.
- W4386230157 hasConcept C121608353 @default.
- W4386230157 hasConcept C126322002 @default.
- W4386230157 hasConcept C148483581 @default.
- W4386230157 hasConcept C153180895 @default.
- W4386230157 hasConcept C154945302 @default.
- W4386230157 hasConcept C169258074 @default.
- W4386230157 hasConcept C2780472235 @default.
- W4386230157 hasConcept C2781281974 @default.
- W4386230157 hasConcept C31972630 @default.
- W4386230157 hasConcept C34736171 @default.
- W4386230157 hasConcept C41008148 @default.
- W4386230157 hasConcept C52622490 @default.
- W4386230157 hasConcept C530470458 @default.
- W4386230157 hasConcept C71924100 @default.
- W4386230157 hasConcept C79337645 @default.
- W4386230157 hasConcept C95623464 @default.
- W4386230157 hasConceptScore W4386230157C121608353 @default.
- W4386230157 hasConceptScore W4386230157C126322002 @default.
- W4386230157 hasConceptScore W4386230157C148483581 @default.
- W4386230157 hasConceptScore W4386230157C153180895 @default.
- W4386230157 hasConceptScore W4386230157C154945302 @default.
- W4386230157 hasConceptScore W4386230157C169258074 @default.
- W4386230157 hasConceptScore W4386230157C2780472235 @default.
- W4386230157 hasConceptScore W4386230157C2781281974 @default.
- W4386230157 hasConceptScore W4386230157C31972630 @default.
- W4386230157 hasConceptScore W4386230157C34736171 @default.
- W4386230157 hasConceptScore W4386230157C41008148 @default.
- W4386230157 hasConceptScore W4386230157C52622490 @default.
- W4386230157 hasConceptScore W4386230157C530470458 @default.
- W4386230157 hasConceptScore W4386230157C71924100 @default.
- W4386230157 hasConceptScore W4386230157C79337645 @default.
- W4386230157 hasConceptScore W4386230157C95623464 @default.
- W4386230157 hasLocation W43862301571 @default.
- W4386230157 hasOpenAccess W4386230157 @default.
- W4386230157 hasPrimaryLocation W43862301571 @default.
- W4386230157 hasRelatedWork W1564326797 @default.
- W4386230157 hasRelatedWork W2126100045 @default.
- W4386230157 hasRelatedWork W2167219844 @default.
- W4386230157 hasRelatedWork W2391959412 @default.
- W4386230157 hasRelatedWork W2899307613 @default.
- W4386230157 hasRelatedWork W2997394683 @default.
- W4386230157 hasRelatedWork W3010923102 @default.
- W4386230157 hasRelatedWork W4378220592 @default.
- W4386230157 hasRelatedWork W1966592431 @default.
- W4386230157 hasRelatedWork W2345184372 @default.
- W4386230157 isParatext "false" @default.
- W4386230157 isRetracted "false" @default.
- W4386230157 workType "book-chapter" @default.