Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386231738> ?p ?o ?g. }
- W4386231738 endingPage "3523" @default.
- W4386231738 startingPage "3513" @default.
- W4386231738 abstract "A novel multi-channel-based 3D convolutional neural network (3D-CNN) is proposed in this paper to classify sleep stages. Time domain features, frequency domain features, and time-frequency domain features are extracted from electroencephalography (EEG), electromyogram (EMG), and electrooculogram (EOG) channels and fed into the 3D-CNN model to classify sleep stages. Intrinsic connections among different bio-signals and different frequency bands in time series and time-frequency are learned by 3D convolutional layers, while the frequency relations are learned by 2D convolutional layers. Partial dot-product attention layers help this model find the most important channels and frequency bands in different sleep stages. A long short-term memory unit is added to learn the transition rules among neighboring epochs. Classification experiments were conducted using both ISRUC-S3 datasets and ISRUC-S1, sleep-disorder datasets. The experimental results showed that the overall accuracy achieved 0.832 and the F1-score and Cohen's kappa reached 0.814 and 0.783, respectively, on ISRUC-S3, which are a competitive classification performance with the state-of-the-art baselines. The overall accuracy, F1-score, and Cohen's kappa on ISRUC-S1 achieved 0.820, 0.797, and 0.768, respectively, which also demonstrate its generality on unhealthy subjects. Further experiments were conducted on ISRUC-S3 subset to evaluate its training time. The training time on 10 subjects from ISRUC-S3 with 8549 epochs is 4493s, which indicates its highest calculation speed compared with the existing high-performance graph convolutional networks and [Formula: see text]Net architecture algorithms." @default.
- W4386231738 created "2023-08-29" @default.
- W4386231738 creator A5061933200 @default.
- W4386231738 creator A5074114254 @default.
- W4386231738 creator A5078200798 @default.
- W4386231738 date "2023-01-01" @default.
- W4386231738 modified "2023-09-30" @default.
- W4386231738 title "3DSleepNet: A Multi-Channel Bio-Signal Based Sleep Stages Classification Method Using Deep Learning" @default.
- W4386231738 cites W1820534876 @default.
- W4386231738 cites W1979835117 @default.
- W4386231738 cites W1983364832 @default.
- W4386231738 cites W1988565407 @default.
- W4386231738 cites W2021589706 @default.
- W4386231738 cites W2054764914 @default.
- W4386231738 cites W2088478798 @default.
- W4386231738 cites W2116106036 @default.
- W4386231738 cites W2131209034 @default.
- W4386231738 cites W2162800060 @default.
- W4386231738 cites W2163462953 @default.
- W4386231738 cites W2172894528 @default.
- W4386231738 cites W2180889008 @default.
- W4386231738 cites W2194775991 @default.
- W4386231738 cites W2339955186 @default.
- W4386231738 cites W2475148710 @default.
- W4386231738 cites W2534016704 @default.
- W4386231738 cites W2536497859 @default.
- W4386231738 cites W2539353608 @default.
- W4386231738 cites W2565543439 @default.
- W4386231738 cites W2593999683 @default.
- W4386231738 cites W2604096629 @default.
- W4386231738 cites W2612047884 @default.
- W4386231738 cites W2761866584 @default.
- W4386231738 cites W2771006757 @default.
- W4386231738 cites W2793841943 @default.
- W4386231738 cites W2794026873 @default.
- W4386231738 cites W2802545914 @default.
- W4386231738 cites W2805075551 @default.
- W4386231738 cites W2889782437 @default.
- W4386231738 cites W2893192409 @default.
- W4386231738 cites W2893892260 @default.
- W4386231738 cites W2895904856 @default.
- W4386231738 cites W2920016582 @default.
- W4386231738 cites W2943568678 @default.
- W4386231738 cites W2946966984 @default.
- W4386231738 cites W2963820951 @default.
- W4386231738 cites W2963919481 @default.
- W4386231738 cites W2980059005 @default.
- W4386231738 cites W3034369844 @default.
- W4386231738 cites W3082394918 @default.
- W4386231738 cites W3090943753 @default.
- W4386231738 cites W3093125198 @default.
- W4386231738 cites W3117016291 @default.
- W4386231738 cites W3127347736 @default.
- W4386231738 cites W3156463266 @default.
- W4386231738 cites W3174370132 @default.
- W4386231738 cites W3188349400 @default.
- W4386231738 cites W3198543070 @default.
- W4386231738 cites W3209635954 @default.
- W4386231738 cites W4280542327 @default.
- W4386231738 doi "https://doi.org/10.1109/tnsre.2023.3309542" @default.
- W4386231738 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37639413" @default.
- W4386231738 hasPublicationYear "2023" @default.
- W4386231738 type Work @default.
- W4386231738 citedByCount "0" @default.
- W4386231738 crossrefType "journal-article" @default.
- W4386231738 hasAuthorship W4386231738A5061933200 @default.
- W4386231738 hasAuthorship W4386231738A5074114254 @default.
- W4386231738 hasAuthorship W4386231738A5078200798 @default.
- W4386231738 hasBestOaLocation W43862317381 @default.
- W4386231738 hasConcept C103824480 @default.
- W4386231738 hasConcept C111919701 @default.
- W4386231738 hasConcept C118552586 @default.
- W4386231738 hasConcept C127162648 @default.
- W4386231738 hasConcept C132525143 @default.
- W4386231738 hasConcept C153180895 @default.
- W4386231738 hasConcept C154945302 @default.
- W4386231738 hasConcept C15744967 @default.
- W4386231738 hasConcept C19118579 @default.
- W4386231738 hasConcept C2775841894 @default.
- W4386231738 hasConcept C2778205975 @default.
- W4386231738 hasConcept C2780767217 @default.
- W4386231738 hasConcept C28490314 @default.
- W4386231738 hasConcept C2910364982 @default.
- W4386231738 hasConcept C31258907 @default.
- W4386231738 hasConcept C31972630 @default.
- W4386231738 hasConcept C41008148 @default.
- W4386231738 hasConcept C522805319 @default.
- W4386231738 hasConcept C542102704 @default.
- W4386231738 hasConcept C80444323 @default.
- W4386231738 hasConcept C81363708 @default.
- W4386231738 hasConceptScore W4386231738C103824480 @default.
- W4386231738 hasConceptScore W4386231738C111919701 @default.
- W4386231738 hasConceptScore W4386231738C118552586 @default.
- W4386231738 hasConceptScore W4386231738C127162648 @default.
- W4386231738 hasConceptScore W4386231738C132525143 @default.
- W4386231738 hasConceptScore W4386231738C153180895 @default.
- W4386231738 hasConceptScore W4386231738C154945302 @default.
- W4386231738 hasConceptScore W4386231738C15744967 @default.