Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386241566> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4386241566 abstract "Abstract Rock quality designation (RQD), as a well-accepted and appliable rock quality index, is crucial in geotechnical engineering. Current RQD estimation mainly relies on either manual statistics or the image binarisation method, while the former approach surrenders high labour intensity and low efficiency and the latter one is constrained by image acquisition. Considering the above-mentioned limitations in RQD estimation, this study proposed a novel convolutional neural network (CNN) approach to automatically perform core recognition and RQD cataloguing with significant improvement in accuracy and efficiency. Firstly, the proposed neural network automatically identified the prefabricated round markers to distinct drilling rounds. To maximumly strengthen the engineering capability of CNN without losing generality, we considered image inversion, rotation, noise addition, and RGB conversion of 200 core box samples in total. Secondly, replacing the unstable image binarisation method, the advanced YOLO V2 object detection model, a single-stage real-time object detection model, was adopted in this study. We also proposed the modified four-layer downsampling structure as our CNN, and then developed an automatic recognition approach for both cores and the round markers, resulting in a 93.1% accuracy according to the validation set. Thirdly, this study proposed an auto-ranking algorithm to sequence the core sample according to the confidence of core recognition by the CNN and row-scanning results for subsequent RQD cataloguing. In addition, the optimal scan width was proved to be 1.33 times larger than the average core width. Finally, a quick cataloguing platform for drill cores was developed. Compared with manual measurement and visual statistics, intelligent RQD cataloguing is characterised by its unparalleled accuracy and efficiency, which is merited by the low relative error (1.84%) and fast processing time (around 0.2 s). Moreover, the application presented in this paper is applicable to most geotechnical engineering scenarios. This is attributed to its low requirements in image acquisition, high efficiency, precise recognition, and robustness." @default.
- W4386241566 created "2023-08-30" @default.
- W4386241566 creator A5024436877 @default.
- W4386241566 creator A5029471584 @default.
- W4386241566 creator A5041372891 @default.
- W4386241566 creator A5057708257 @default.
- W4386241566 creator A5072317258 @default.
- W4386241566 creator A5073824037 @default.
- W4386241566 creator A5082386515 @default.
- W4386241566 date "2023-08-29" @default.
- W4386241566 modified "2023-10-18" @default.
- W4386241566 title "Intelligent recognition of drill cores and automatic RQD analytics based on deep learning" @default.
- W4386241566 cites W1721732209 @default.
- W4386241566 cites W1816900797 @default.
- W4386241566 cites W1963617105 @default.
- W4386241566 cites W1968576247 @default.
- W4386241566 cites W1970592655 @default.
- W4386241566 cites W1977168082 @default.
- W4386241566 cites W1977389574 @default.
- W4386241566 cites W1979385314 @default.
- W4386241566 cites W1990555932 @default.
- W4386241566 cites W2067429622 @default.
- W4386241566 cites W2123229215 @default.
- W4386241566 cites W2140405352 @default.
- W4386241566 cites W2194775991 @default.
- W4386241566 cites W2570343428 @default.
- W4386241566 cites W2574205827 @default.
- W4386241566 cites W2757920841 @default.
- W4386241566 cites W2900238165 @default.
- W4386241566 cites W2963037989 @default.
- W4386241566 cites W2995811485 @default.
- W4386241566 cites W3126769488 @default.
- W4386241566 cites W3132584770 @default.
- W4386241566 cites W3154436068 @default.
- W4386241566 cites W3155257528 @default.
- W4386241566 cites W3159211986 @default.
- W4386241566 cites W3166188498 @default.
- W4386241566 cites W3176631972 @default.
- W4386241566 cites W3209540337 @default.
- W4386241566 cites W3210004332 @default.
- W4386241566 cites W4223592032 @default.
- W4386241566 cites W4224999665 @default.
- W4386241566 cites W4318426479 @default.
- W4386241566 cites W4375816522 @default.
- W4386241566 cites W748825137 @default.
- W4386241566 doi "https://doi.org/10.1007/s11440-023-02011-2" @default.
- W4386241566 hasPublicationYear "2023" @default.
- W4386241566 type Work @default.
- W4386241566 citedByCount "0" @default.
- W4386241566 crossrefType "journal-article" @default.
- W4386241566 hasAuthorship W4386241566A5024436877 @default.
- W4386241566 hasAuthorship W4386241566A5029471584 @default.
- W4386241566 hasAuthorship W4386241566A5041372891 @default.
- W4386241566 hasAuthorship W4386241566A5057708257 @default.
- W4386241566 hasAuthorship W4386241566A5072317258 @default.
- W4386241566 hasAuthorship W4386241566A5073824037 @default.
- W4386241566 hasAuthorship W4386241566A5082386515 @default.
- W4386241566 hasBestOaLocation W43862415661 @default.
- W4386241566 hasConcept C127413603 @default.
- W4386241566 hasConcept C153180895 @default.
- W4386241566 hasConcept C154945302 @default.
- W4386241566 hasConcept C173736775 @default.
- W4386241566 hasConcept C31972630 @default.
- W4386241566 hasConcept C41008148 @default.
- W4386241566 hasConcept C50644808 @default.
- W4386241566 hasConcept C78519656 @default.
- W4386241566 hasConcept C81363708 @default.
- W4386241566 hasConceptScore W4386241566C127413603 @default.
- W4386241566 hasConceptScore W4386241566C153180895 @default.
- W4386241566 hasConceptScore W4386241566C154945302 @default.
- W4386241566 hasConceptScore W4386241566C173736775 @default.
- W4386241566 hasConceptScore W4386241566C31972630 @default.
- W4386241566 hasConceptScore W4386241566C41008148 @default.
- W4386241566 hasConceptScore W4386241566C50644808 @default.
- W4386241566 hasConceptScore W4386241566C78519656 @default.
- W4386241566 hasConceptScore W4386241566C81363708 @default.
- W4386241566 hasFunder F4320320965 @default.
- W4386241566 hasFunder F4320321001 @default.
- W4386241566 hasFunder F4320335787 @default.
- W4386241566 hasLocation W43862415661 @default.
- W4386241566 hasOpenAccess W4386241566 @default.
- W4386241566 hasPrimaryLocation W43862415661 @default.
- W4386241566 hasRelatedWork W1891287906 @default.
- W4386241566 hasRelatedWork W1969923398 @default.
- W4386241566 hasRelatedWork W2036807459 @default.
- W4386241566 hasRelatedWork W2166024367 @default.
- W4386241566 hasRelatedWork W2767651786 @default.
- W4386241566 hasRelatedWork W2772917594 @default.
- W4386241566 hasRelatedWork W2775347418 @default.
- W4386241566 hasRelatedWork W2912288872 @default.
- W4386241566 hasRelatedWork W3181746755 @default.
- W4386241566 hasRelatedWork W564581980 @default.
- W4386241566 isParatext "false" @default.
- W4386241566 isRetracted "false" @default.
- W4386241566 workType "article" @default.