Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386243390> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4386243390 abstract "Introduction Previous studies have investigated predictive factors for parenting stress in caregivers of autism spectrum disorder (ASD) patients using traditional statistical approaches, but their study settings and results were inconsistent. Herein, this study aimed to identify major predictors for parenting stress in this population by developing explainable machine learning models. Methods Study participants were collected from the Department of Child and Adolescent Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, the Republic of Korea between March 2016 and October 2020. A total of 36 model features were used, which include subscales of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) for caregivers’ psychopathology, Social Responsiveness Scale-2 for core symptoms, and Child Behavior Checklist (CBCL) for behavioral problems. Machine learning classifiers [eXtreme Gradient Boosting (XGBoost), random forest (RF), logistic regression, and support vector machine (SVM) classifier] were generated to predict severe total parenting stress and its subscales (parental distress, parent-child dysfunctional interaction, and difficult child). Model performance was assessed by area under the receiver operating curve (AUC), sensitivity, specificity, accuracy, positive predictive value, and negative predictive value. We utilized the SHapley Additive exPlanations tree explainer to investigate major predictors. Results A total of 496 participants were included [mean age of ASD patients 6.39 (SD 2.24); 413 men (83.3%)]. The best-performing models achieved an AUC of 0.831 (RF model; 95% CI 0.740–0.910) for parental distress, 0.814 (SVM model; 95% CI 0.720–0.896) for parent-child dysfunctional interaction, 0.813 (RF model; 95% CI 0.724–0.891) for difficult child, and 0.862 (RF model; 95% CI 0.783–0.930) for total parenting stress on the test set. For the total parenting stress, ASD patients’ aggressive behavior and anxious/depressed, and caregivers’ depression, social introversion, and psychasthenia were the top 5 leading predictors. Conclusion By using explainable machine learning models (XGBoost and RF), we investigated major predictors for each subscale of the parenting stress index in caregivers of ASD patients. Identified predictors for parenting stress in this population might help alert clinicians whether a caregiver is at a high risk of experiencing severe parenting stress and if so, providing timely interventions, which could eventually improve the treatment outcome for ASD patients." @default.
- W4386243390 created "2023-08-30" @default.
- W4386243390 creator A5055867766 @default.
- W4386243390 creator A5062400242 @default.
- W4386243390 creator A5067297173 @default.
- W4386243390 creator A5083774696 @default.
- W4386243390 date "2023-08-29" @default.
- W4386243390 modified "2023-09-27" @default.
- W4386243390 title "Identifying major predictors for parenting stress in a caregiver of autism spectrum disorder using machine learning models" @default.
- W4386243390 cites W1879110462 @default.
- W4386243390 cites W2025053187 @default.
- W4386243390 cites W2052303184 @default.
- W4386243390 cites W2069698478 @default.
- W4386243390 cites W2072525341 @default.
- W4386243390 cites W2077792679 @default.
- W4386243390 cites W2117175178 @default.
- W4386243390 cites W2332302969 @default.
- W4386243390 cites W2589030084 @default.
- W4386243390 cites W2804364509 @default.
- W4386243390 cites W2898221848 @default.
- W4386243390 cites W2908908199 @default.
- W4386243390 cites W2922080683 @default.
- W4386243390 cites W2999615587 @default.
- W4386243390 cites W3022423927 @default.
- W4386243390 cites W3023997891 @default.
- W4386243390 cites W3114752364 @default.
- W4386243390 cites W3135652725 @default.
- W4386243390 cites W3160560975 @default.
- W4386243390 cites W3171517531 @default.
- W4386243390 cites W3196342418 @default.
- W4386243390 cites W3206372272 @default.
- W4386243390 cites W4210708461 @default.
- W4386243390 cites W4239686412 @default.
- W4386243390 cites W4303671984 @default.
- W4386243390 doi "https://doi.org/10.3389/fnins.2023.1229155" @default.
- W4386243390 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37706158" @default.
- W4386243390 hasPublicationYear "2023" @default.
- W4386243390 type Work @default.
- W4386243390 citedByCount "0" @default.
- W4386243390 crossrefType "journal-article" @default.
- W4386243390 hasAuthorship W4386243390A5055867766 @default.
- W4386243390 hasAuthorship W4386243390A5062400242 @default.
- W4386243390 hasAuthorship W4386243390A5067297173 @default.
- W4386243390 hasAuthorship W4386243390A5083774696 @default.
- W4386243390 hasBestOaLocation W43862433901 @default.
- W4386243390 hasConcept C118552586 @default.
- W4386243390 hasConcept C119857082 @default.
- W4386243390 hasConcept C139265228 @default.
- W4386243390 hasConcept C151956035 @default.
- W4386243390 hasConcept C15744967 @default.
- W4386243390 hasConcept C205778803 @default.
- W4386243390 hasConcept C27502469 @default.
- W4386243390 hasConcept C2778538070 @default.
- W4386243390 hasConcept C2780783007 @default.
- W4386243390 hasConcept C2908647359 @default.
- W4386243390 hasConcept C41008148 @default.
- W4386243390 hasConcept C58471807 @default.
- W4386243390 hasConcept C70410870 @default.
- W4386243390 hasConcept C71924100 @default.
- W4386243390 hasConcept C99454951 @default.
- W4386243390 hasConceptScore W4386243390C118552586 @default.
- W4386243390 hasConceptScore W4386243390C119857082 @default.
- W4386243390 hasConceptScore W4386243390C139265228 @default.
- W4386243390 hasConceptScore W4386243390C151956035 @default.
- W4386243390 hasConceptScore W4386243390C15744967 @default.
- W4386243390 hasConceptScore W4386243390C205778803 @default.
- W4386243390 hasConceptScore W4386243390C27502469 @default.
- W4386243390 hasConceptScore W4386243390C2778538070 @default.
- W4386243390 hasConceptScore W4386243390C2780783007 @default.
- W4386243390 hasConceptScore W4386243390C2908647359 @default.
- W4386243390 hasConceptScore W4386243390C41008148 @default.
- W4386243390 hasConceptScore W4386243390C58471807 @default.
- W4386243390 hasConceptScore W4386243390C70410870 @default.
- W4386243390 hasConceptScore W4386243390C71924100 @default.
- W4386243390 hasConceptScore W4386243390C99454951 @default.
- W4386243390 hasLocation W43862433901 @default.
- W4386243390 hasLocation W43862433902 @default.
- W4386243390 hasOpenAccess W4386243390 @default.
- W4386243390 hasPrimaryLocation W43862433901 @default.
- W4386243390 hasRelatedWork W2184081725 @default.
- W4386243390 hasRelatedWork W2799952019 @default.
- W4386243390 hasRelatedWork W2899084033 @default.
- W4386243390 hasRelatedWork W3047552631 @default.
- W4386243390 hasRelatedWork W3099386970 @default.
- W4386243390 hasRelatedWork W3159096857 @default.
- W4386243390 hasRelatedWork W4293087457 @default.
- W4386243390 hasRelatedWork W4294540691 @default.
- W4386243390 hasRelatedWork W4312917473 @default.
- W4386243390 hasRelatedWork W4367596031 @default.
- W4386243390 hasVolume "17" @default.
- W4386243390 isParatext "false" @default.
- W4386243390 isRetracted "false" @default.
- W4386243390 workType "article" @default.