Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386243670> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4386243670 abstract "ABSTRACT It is estimated that approximately 15% of cancers world-wide can be linked to viral infections. The viruses that can cause or increase the risk of cancer include human papillomavirus, hepatitis B and C viruses, Epstein-Barr virus, and human immunodeficiency virus, to name a few. The computational analysis of the massive amounts of tumor DNA data, whose collection is enabled by the recent advancements in sequencing technologies, have allowed studies of the potential association between cancers and viral pathogens. However, the high diversity of oncoviral families makes reliable detection of viral DNA difficult and thus, renders such analysis challenging. In this paper, we introduce XVir, a data pipeline that relies on a transformer-based deep learning architecture to reliably identify viral DNA present in human tumors. In particular, XVir is trained on genomic sequencing reads from viral and human genomes and may be used with tumor sequence information to find evidence of viral DNA in human cancers. Results on semi-experimental data demonstrate that XVir is capable of achieving high detection accuracy, generally outperforming state-of-the-art competing methods while being more compact and less computationally demanding. CCS CONCEPTS • Computer systems organization → Embedded systems ; Redundancy ; Robotics; • Networks → Network reliability. ACM Reference Format Shorya Consul, John Robertson, and Haris Vikalo. 2023. XVir: A Transformer-Based Architecture for Identifying Viral Reads from Cancer Samples. In Proceedings of The Eighth International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC ’23) . ACM, New York, NY, USA, 8 pages." @default.
- W4386243670 created "2023-08-30" @default.
- W4386243670 creator A5020613051 @default.
- W4386243670 creator A5067602750 @default.
- W4386243670 creator A5077514410 @default.
- W4386243670 date "2023-08-29" @default.
- W4386243670 modified "2023-09-27" @default.
- W4386243670 title "XVir: A Transformer-Based Architecture for Identifying Viral Reads from Cancer Samples" @default.
- W4386243670 cites W1968064923 @default.
- W4386243670 cites W2041391522 @default.
- W4386243670 cites W2108108770 @default.
- W4386243670 cites W2157539385 @default.
- W4386243670 cites W2528456062 @default.
- W4386243670 cites W2752251608 @default.
- W4386243670 cites W2766477897 @default.
- W4386243670 cites W2789624890 @default.
- W4386243670 cites W3003110834 @default.
- W4386243670 cites W3005400930 @default.
- W4386243670 cites W3099854242 @default.
- W4386243670 cites W4225981439 @default.
- W4386243670 cites W4288421329 @default.
- W4386243670 cites W4320040175 @default.
- W4386243670 doi "https://doi.org/10.1101/2023.08.28.555020" @default.
- W4386243670 hasPublicationYear "2023" @default.
- W4386243670 type Work @default.
- W4386243670 citedByCount "0" @default.
- W4386243670 crossrefType "posted-content" @default.
- W4386243670 hasAuthorship W4386243670A5020613051 @default.
- W4386243670 hasAuthorship W4386243670A5067602750 @default.
- W4386243670 hasAuthorship W4386243670A5077514410 @default.
- W4386243670 hasBestOaLocation W43862436701 @default.
- W4386243670 hasConcept C41008148 @default.
- W4386243670 hasConcept C51679486 @default.
- W4386243670 hasConcept C54355233 @default.
- W4386243670 hasConcept C552990157 @default.
- W4386243670 hasConcept C70721500 @default.
- W4386243670 hasConcept C86803240 @default.
- W4386243670 hasConceptScore W4386243670C41008148 @default.
- W4386243670 hasConceptScore W4386243670C51679486 @default.
- W4386243670 hasConceptScore W4386243670C54355233 @default.
- W4386243670 hasConceptScore W4386243670C552990157 @default.
- W4386243670 hasConceptScore W4386243670C70721500 @default.
- W4386243670 hasConceptScore W4386243670C86803240 @default.
- W4386243670 hasLocation W43862436701 @default.
- W4386243670 hasOpenAccess W4386243670 @default.
- W4386243670 hasPrimaryLocation W43862436701 @default.
- W4386243670 hasRelatedWork W1968662832 @default.
- W4386243670 hasRelatedWork W1978367915 @default.
- W4386243670 hasRelatedWork W2116006352 @default.
- W4386243670 hasRelatedWork W2158685423 @default.
- W4386243670 hasRelatedWork W2319666323 @default.
- W4386243670 hasRelatedWork W2326869570 @default.
- W4386243670 hasRelatedWork W2472004504 @default.
- W4386243670 hasRelatedWork W2562129260 @default.
- W4386243670 hasRelatedWork W2888471641 @default.
- W4386243670 hasRelatedWork W4285018218 @default.
- W4386243670 isParatext "false" @default.
- W4386243670 isRetracted "false" @default.
- W4386243670 workType "article" @default.