Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386244533> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4386244533 endingPage "5091" @default.
- W4386244533 startingPage "5091" @default.
- W4386244533 abstract "It is impossible to understand memory errors in a stimulus space without understanding the structure of that space, and taking into account a stimulus spaces’ psychophysical similarity allows straightforward noise-based models to account for nearly all aspects of memory performance (Schurgin et al. 2020). As a novel, critical test of the view that psychophysical similarity provides a unifying account of memory errors, we examined whether similarity data can be used to generalize to new domains with qualitatively distinct structures. We used a generative adversarial network to generate 3 novel “face wheels”: small, medium and large. For the small wheel, all faces on the wheel are a slight variation of a single individual; whereas on the large wheel, faces varied on a wide range of dimensions, including age, race, gender, etc. Participants (N=50) memorized either 1, 2, or 4 faces from each of these wheels and reproduced them. The wheels generated dramatically different memory error distributions: when remembering 1 item from the small wheel, a large number of participants’ errors were >90deg; whereas even when remembering 2 items from the large wheel, no errors exceeded 20deg. Can similarity structure predict these error distributions? We find that it can: independent similarity data (N=50) allowed 0-free-parameter predictions of the shape of these distributions, such that a single memory strength parameter from a given set size could predict the wildly-divergent shapes of the error distributions on the three wheels. By contrast, while alternative assumptions about the source of memory errors can sometimes also fit — though not predict — performance for simple stimuli (Tomic & Bays, 2022), these models could not fit this data. Overall, we find that a model using independent similarity measures can predict — rather than simply fit — qualitative and quantitative characteristics of memory errors in novel, realistic stimulus spaces." @default.
- W4386244533 created "2023-08-30" @default.
- W4386244533 creator A5022770371 @default.
- W4386244533 creator A5025581392 @default.
- W4386244533 date "2023-08-01" @default.
- W4386244533 modified "2023-09-27" @default.
- W4386244533 title "Visual similarity structure a priori predicts memory errors for novel high-dimensional face stimuli" @default.
- W4386244533 doi "https://doi.org/10.1167/jov.23.9.5091" @default.
- W4386244533 hasPublicationYear "2023" @default.
- W4386244533 type Work @default.
- W4386244533 citedByCount "0" @default.
- W4386244533 crossrefType "journal-article" @default.
- W4386244533 hasAuthorship W4386244533A5022770371 @default.
- W4386244533 hasAuthorship W4386244533A5025581392 @default.
- W4386244533 hasBestOaLocation W43862445331 @default.
- W4386244533 hasConcept C103278499 @default.
- W4386244533 hasConcept C111472728 @default.
- W4386244533 hasConcept C11413529 @default.
- W4386244533 hasConcept C115961682 @default.
- W4386244533 hasConcept C138885662 @default.
- W4386244533 hasConcept C153180895 @default.
- W4386244533 hasConcept C154945302 @default.
- W4386244533 hasConcept C15744967 @default.
- W4386244533 hasConcept C159985019 @default.
- W4386244533 hasConcept C177264268 @default.
- W4386244533 hasConcept C180747234 @default.
- W4386244533 hasConcept C192562407 @default.
- W4386244533 hasConcept C199360897 @default.
- W4386244533 hasConcept C204323151 @default.
- W4386244533 hasConcept C2779918689 @default.
- W4386244533 hasConcept C33923547 @default.
- W4386244533 hasConcept C41008148 @default.
- W4386244533 hasConcept C75553542 @default.
- W4386244533 hasConceptScore W4386244533C103278499 @default.
- W4386244533 hasConceptScore W4386244533C111472728 @default.
- W4386244533 hasConceptScore W4386244533C11413529 @default.
- W4386244533 hasConceptScore W4386244533C115961682 @default.
- W4386244533 hasConceptScore W4386244533C138885662 @default.
- W4386244533 hasConceptScore W4386244533C153180895 @default.
- W4386244533 hasConceptScore W4386244533C154945302 @default.
- W4386244533 hasConceptScore W4386244533C15744967 @default.
- W4386244533 hasConceptScore W4386244533C159985019 @default.
- W4386244533 hasConceptScore W4386244533C177264268 @default.
- W4386244533 hasConceptScore W4386244533C180747234 @default.
- W4386244533 hasConceptScore W4386244533C192562407 @default.
- W4386244533 hasConceptScore W4386244533C199360897 @default.
- W4386244533 hasConceptScore W4386244533C204323151 @default.
- W4386244533 hasConceptScore W4386244533C2779918689 @default.
- W4386244533 hasConceptScore W4386244533C33923547 @default.
- W4386244533 hasConceptScore W4386244533C41008148 @default.
- W4386244533 hasConceptScore W4386244533C75553542 @default.
- W4386244533 hasIssue "9" @default.
- W4386244533 hasLocation W43862445331 @default.
- W4386244533 hasOpenAccess W4386244533 @default.
- W4386244533 hasPrimaryLocation W43862445331 @default.
- W4386244533 hasRelatedWork W2033914206 @default.
- W4386244533 hasRelatedWork W2042327336 @default.
- W4386244533 hasRelatedWork W2046077695 @default.
- W4386244533 hasRelatedWork W2146076056 @default.
- W4386244533 hasRelatedWork W2163831990 @default.
- W4386244533 hasRelatedWork W2378160586 @default.
- W4386244533 hasRelatedWork W2996038082 @default.
- W4386244533 hasRelatedWork W3003836766 @default.
- W4386244533 hasRelatedWork W3047965787 @default.
- W4386244533 hasRelatedWork W3184582087 @default.
- W4386244533 hasVolume "23" @default.
- W4386244533 isParatext "false" @default.
- W4386244533 isRetracted "false" @default.
- W4386244533 workType "article" @default.