Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386248300> ?p ?o ?g. }
- W4386248300 endingPage "119567" @default.
- W4386248300 startingPage "119567" @default.
- W4386248300 abstract "This paper focuses on the real-time dynamic clustering analysis of power load data based on the dynamic conditional score (DCS) model, and an autocorrelation increment fuzzy C-means clustering algorithm based on the DCS model is proposed. (1) The paper addresses the problem that current power load clustering methods, when performing time series data mining, tend to focus on capturing the mean structure while ignoring the variance characteristics of the data, making it difficult to effectively capture the structural information of time series data. The DCS model is used as the statistical model basis for clustering analysis, and the time series is clustered based on the estimated conditional moment characteristics of the model, dynamically capturing data features such as the mean, variance, and sequence correlation of time series data, effectively improving the clustering performance. (2) This paper also addresses the issue that current power load clustering methods tend to focus on static datasets of user power loads and cannot effectively handle the data stream clustering problem with time series characteristics in practical applications. The DCS model parameter dataset and the autocorrelation increment fuzzy clustering algorithm are used to conduct a dynamic data flow analysis of user electricity behaviour evolution and pattern continuous updating research for power loads. The clustering results are dynamically updated based on the user's power load data stream using the proposed algorithm, achieving research on a universal clustering model and secure and efficient algorithms in a big data environment. (3) The paper verifies the clustering performance of the proposed method using power load time series data provided by a Chinese power supply company as a case dataset. The clustering evaluation index shows that the proposed algorithm has high clustering accuracy and good clustering performance. Additionally, different power supply recommendations are proposed for different customer electricity types in the obtained clustering results to provide more personalized power services." @default.
- W4386248300 created "2023-08-30" @default.
- W4386248300 creator A5024541563 @default.
- W4386248300 creator A5029460947 @default.
- W4386248300 creator A5034121567 @default.
- W4386248300 creator A5034452987 @default.
- W4386248300 creator A5038837596 @default.
- W4386248300 creator A5040027560 @default.
- W4386248300 date "2023-11-01" @default.
- W4386248300 modified "2023-10-16" @default.
- W4386248300 title "An Autocorrelation Incremental Fuzzy Clustering Framework Based on Dynamic Conditional Scoring Model" @default.
- W4386248300 cites W1128809682 @default.
- W4386248300 cites W1894414046 @default.
- W4386248300 cites W2039333445 @default.
- W4386248300 cites W2045293483 @default.
- W4386248300 cites W2047136934 @default.
- W4386248300 cites W2049623660 @default.
- W4386248300 cites W2112339981 @default.
- W4386248300 cites W2118211060 @default.
- W4386248300 cites W2291119068 @default.
- W4386248300 cites W2414242250 @default.
- W4386248300 cites W2517224663 @default.
- W4386248300 cites W2559932693 @default.
- W4386248300 cites W2786918196 @default.
- W4386248300 cites W2791288608 @default.
- W4386248300 cites W2793395501 @default.
- W4386248300 cites W2804281078 @default.
- W4386248300 cites W2804412910 @default.
- W4386248300 cites W2884562637 @default.
- W4386248300 cites W2901741617 @default.
- W4386248300 cites W2952447090 @default.
- W4386248300 cites W2963771056 @default.
- W4386248300 cites W2964080919 @default.
- W4386248300 cites W2972326011 @default.
- W4386248300 cites W2998105030 @default.
- W4386248300 cites W3071522575 @default.
- W4386248300 cites W3080206299 @default.
- W4386248300 cites W3118831001 @default.
- W4386248300 cites W3121430753 @default.
- W4386248300 cites W3128273518 @default.
- W4386248300 cites W3147312340 @default.
- W4386248300 cites W3152714518 @default.
- W4386248300 cites W3168407877 @default.
- W4386248300 cites W3204094780 @default.
- W4386248300 cites W3216845913 @default.
- W4386248300 cites W4200128785 @default.
- W4386248300 cites W4206350677 @default.
- W4386248300 cites W4211014852 @default.
- W4386248300 cites W4213100682 @default.
- W4386248300 cites W4220653366 @default.
- W4386248300 cites W4220937438 @default.
- W4386248300 cites W4225014747 @default.
- W4386248300 cites W4225149744 @default.
- W4386248300 cites W4281692486 @default.
- W4386248300 cites W4293354304 @default.
- W4386248300 doi "https://doi.org/10.1016/j.ins.2023.119567" @default.
- W4386248300 hasPublicationYear "2023" @default.
- W4386248300 type Work @default.
- W4386248300 citedByCount "0" @default.
- W4386248300 crossrefType "journal-article" @default.
- W4386248300 hasAuthorship W4386248300A5024541563 @default.
- W4386248300 hasAuthorship W4386248300A5029460947 @default.
- W4386248300 hasAuthorship W4386248300A5034121567 @default.
- W4386248300 hasAuthorship W4386248300A5034452987 @default.
- W4386248300 hasAuthorship W4386248300A5038837596 @default.
- W4386248300 hasAuthorship W4386248300A5040027560 @default.
- W4386248300 hasConcept C105795698 @default.
- W4386248300 hasConcept C119857082 @default.
- W4386248300 hasConcept C124101348 @default.
- W4386248300 hasConcept C154945302 @default.
- W4386248300 hasConcept C17212007 @default.
- W4386248300 hasConcept C193143536 @default.
- W4386248300 hasConcept C33704608 @default.
- W4386248300 hasConcept C33923547 @default.
- W4386248300 hasConcept C41008148 @default.
- W4386248300 hasConcept C5297727 @default.
- W4386248300 hasConcept C58166 @default.
- W4386248300 hasConcept C73555534 @default.
- W4386248300 hasConcept C94641424 @default.
- W4386248300 hasConceptScore W4386248300C105795698 @default.
- W4386248300 hasConceptScore W4386248300C119857082 @default.
- W4386248300 hasConceptScore W4386248300C124101348 @default.
- W4386248300 hasConceptScore W4386248300C154945302 @default.
- W4386248300 hasConceptScore W4386248300C17212007 @default.
- W4386248300 hasConceptScore W4386248300C193143536 @default.
- W4386248300 hasConceptScore W4386248300C33704608 @default.
- W4386248300 hasConceptScore W4386248300C33923547 @default.
- W4386248300 hasConceptScore W4386248300C41008148 @default.
- W4386248300 hasConceptScore W4386248300C5297727 @default.
- W4386248300 hasConceptScore W4386248300C58166 @default.
- W4386248300 hasConceptScore W4386248300C73555534 @default.
- W4386248300 hasConceptScore W4386248300C94641424 @default.
- W4386248300 hasLocation W43862483001 @default.
- W4386248300 hasOpenAccess W4386248300 @default.
- W4386248300 hasPrimaryLocation W43862483001 @default.
- W4386248300 hasRelatedWork W2036503911 @default.
- W4386248300 hasRelatedWork W2047852079 @default.
- W4386248300 hasRelatedWork W2162352926 @default.