Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386248977> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4386248977 abstract "Federated Learning (FL) is a distributed Machine Learning paradigm that allows multiple clients to collaboratively train a model under the control of a central server while keeping data locally in edge devices. To simplify workload management in FL ecosystems, cloud computing and container-based approaches such as Kubernetes (K8s) have been proposed for scalable deployment. Nonetheless, K8s can violate fundamental FL privacy principles, e.g., the inherent flat networking approach in K8s can potentially allow FL clients to access other client or domain resources. The latter poses an open research problem and gap in the literature because serious privacy risks can arise from attackers gaining access to any client in the FL setup. To address this problem, this paper presents a networking approach via network isolation at the link layer level, and authentication and data packet encryption at the network layer level. The former allows to create secure resource sharing, and the latter is used to protect in-transit data. For this purpose, we use a K8s networking operator and a secure network protocol suite. The above combination facilitates on-demand link-layer connectivity, per-link data source authentication, and confidentiality between FL actors. We tested our approach on a network testbed composed of different geo-located nodes where FL clients are deployed. Our promising results showcase the feasibility of the solution for privacy preservation at the network level in K8s-based FL." @default.
- W4386248977 created "2023-08-30" @default.
- W4386248977 creator A5016646288 @default.
- W4386248977 creator A5024590871 @default.
- W4386248977 creator A5030580652 @default.
- W4386248977 creator A5060468302 @default.
- W4386248977 creator A5065618485 @default.
- W4386248977 creator A5069693211 @default.
- W4386248977 creator A5078024773 @default.
- W4386248977 creator A5078730696 @default.
- W4386248977 creator A5090705977 @default.
- W4386248977 date "2023-05-20" @default.
- W4386248977 modified "2023-09-27" @default.
- W4386248977 title "Privacy Preservation in Kubernetes-based Federated Learning: A Networking Approach" @default.
- W4386248977 cites W1593925121 @default.
- W4386248977 cites W2257936664 @default.
- W4386248977 cites W2281291499 @default.
- W4386248977 cites W2912213068 @default.
- W4386248977 cites W3081233525 @default.
- W4386248977 cites W3091870957 @default.
- W4386248977 cites W3119386769 @default.
- W4386248977 cites W3131796779 @default.
- W4386248977 cites W3185987447 @default.
- W4386248977 cites W4200487147 @default.
- W4386248977 cites W4210923679 @default.
- W4386248977 cites W4220895653 @default.
- W4386248977 cites W4226435948 @default.
- W4386248977 cites W4250067809 @default.
- W4386248977 cites W4286248455 @default.
- W4386248977 cites W4309345943 @default.
- W4386248977 doi "https://doi.org/10.1109/infocomwkshps57453.2023.10225925" @default.
- W4386248977 hasPublicationYear "2023" @default.
- W4386248977 type Work @default.
- W4386248977 citedByCount "0" @default.
- W4386248977 crossrefType "proceedings-article" @default.
- W4386248977 hasAuthorship W4386248977A5016646288 @default.
- W4386248977 hasAuthorship W4386248977A5024590871 @default.
- W4386248977 hasAuthorship W4386248977A5030580652 @default.
- W4386248977 hasAuthorship W4386248977A5060468302 @default.
- W4386248977 hasAuthorship W4386248977A5065618485 @default.
- W4386248977 hasAuthorship W4386248977A5069693211 @default.
- W4386248977 hasAuthorship W4386248977A5078024773 @default.
- W4386248977 hasAuthorship W4386248977A5078730696 @default.
- W4386248977 hasAuthorship W4386248977A5090705977 @default.
- W4386248977 hasConcept C105339364 @default.
- W4386248977 hasConcept C111919701 @default.
- W4386248977 hasConcept C120314980 @default.
- W4386248977 hasConcept C148730421 @default.
- W4386248977 hasConcept C158379750 @default.
- W4386248977 hasConcept C190793597 @default.
- W4386248977 hasConcept C31258907 @default.
- W4386248977 hasConcept C31395832 @default.
- W4386248977 hasConcept C38652104 @default.
- W4386248977 hasConcept C41008148 @default.
- W4386248977 hasConcept C48044578 @default.
- W4386248977 hasConcept C527821871 @default.
- W4386248977 hasConcept C77088390 @default.
- W4386248977 hasConcept C79974875 @default.
- W4386248977 hasConceptScore W4386248977C105339364 @default.
- W4386248977 hasConceptScore W4386248977C111919701 @default.
- W4386248977 hasConceptScore W4386248977C120314980 @default.
- W4386248977 hasConceptScore W4386248977C148730421 @default.
- W4386248977 hasConceptScore W4386248977C158379750 @default.
- W4386248977 hasConceptScore W4386248977C190793597 @default.
- W4386248977 hasConceptScore W4386248977C31258907 @default.
- W4386248977 hasConceptScore W4386248977C31395832 @default.
- W4386248977 hasConceptScore W4386248977C38652104 @default.
- W4386248977 hasConceptScore W4386248977C41008148 @default.
- W4386248977 hasConceptScore W4386248977C48044578 @default.
- W4386248977 hasConceptScore W4386248977C527821871 @default.
- W4386248977 hasConceptScore W4386248977C77088390 @default.
- W4386248977 hasConceptScore W4386248977C79974875 @default.
- W4386248977 hasLocation W43862489771 @default.
- W4386248977 hasOpenAccess W4386248977 @default.
- W4386248977 hasPrimaryLocation W43862489771 @default.
- W4386248977 hasRelatedWork W1596010778 @default.
- W4386248977 hasRelatedWork W1987753593 @default.
- W4386248977 hasRelatedWork W2141005820 @default.
- W4386248977 hasRelatedWork W2240063513 @default.
- W4386248977 hasRelatedWork W2267601986 @default.
- W4386248977 hasRelatedWork W2364921833 @default.
- W4386248977 hasRelatedWork W2385146268 @default.
- W4386248977 hasRelatedWork W3010663160 @default.
- W4386248977 hasRelatedWork W4300361016 @default.
- W4386248977 hasRelatedWork W4310607303 @default.
- W4386248977 isParatext "false" @default.
- W4386248977 isRetracted "false" @default.
- W4386248977 workType "article" @default.