Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386250512> ?p ?o ?g. }
- W4386250512 endingPage "9735" @default.
- W4386250512 startingPage "9735" @default.
- W4386250512 abstract "Visual question answering (VQA) is a task that generates or predicts an answer to a question in human language about visual images. VQA is an active field combining two AI branches: NLP and computer vision. VQA in the medical field is still at an early stage, and it needs vast efforts and exploration to reach practical usage. This paper proposes two models that are utilized in the latest vision and NLP transformers that outperform the SOTA and have not yet been utilized in medical VQA. The ELECTRA-base transformer is used for textual feature extraction, whereas SWIN is used for visual feature extraction. In the SOTA medical VQA, selecting the model is based on the model that achieves the highest validation accuracy or the last model in training. The first proposed model, the best-value-based model, is selected based on the highest validation accuracy. The second model, the greedy-soup-based model, uses a greedy soup technique based on the fusion of multiple fine-tuned models to set the model parameters. The greedy soup selects the model parameters by fusing the model parameters that have significant performance on the validation accuracy in training. The greedy-soup-based model outperforms the best-value-based model, and both proposed models outperform the SOTA, which has an accuracy of 83.49%. The greedy-soup-based model is optimized with batch size and learning rate. During the optimization, seven extra models exceed the SOTA accuracy. The best model trained with a learning rate of 1.0×10−4 and batch size 16 achieves an accuracy of 87.41%." @default.
- W4386250512 created "2023-08-30" @default.
- W4386250512 creator A5003483157 @default.
- W4386250512 creator A5004401480 @default.
- W4386250512 creator A5012921096 @default.
- W4386250512 creator A5055424071 @default.
- W4386250512 date "2023-08-28" @default.
- W4386250512 modified "2023-09-27" @default.
- W4386250512 title "An Effective Med-VQA Method Using a Transformer with Weights Fusion of Multiple Fine-Tuned Models" @default.
- W4386250512 cites W1933349210 @default.
- W4386250512 cites W1982890488 @default.
- W4386250512 cites W2064675550 @default.
- W4386250512 cites W2097117768 @default.
- W4386250512 cites W2124386111 @default.
- W4386250512 cites W2131774270 @default.
- W4386250512 cites W2142192571 @default.
- W4386250512 cites W2194775991 @default.
- W4386250512 cites W2618530766 @default.
- W4386250512 cites W2747623286 @default.
- W4386250512 cites W2803042791 @default.
- W4386250512 cites W2828862258 @default.
- W4386250512 cites W2891394954 @default.
- W4386250512 cites W2894842749 @default.
- W4386250512 cites W2921873695 @default.
- W4386250512 cites W2962749469 @default.
- W4386250512 cites W2963143606 @default.
- W4386250512 cites W2963383024 @default.
- W4386250512 cites W2963398599 @default.
- W4386250512 cites W2963717374 @default.
- W4386250512 cites W2963770662 @default.
- W4386250512 cites W2963981422 @default.
- W4386250512 cites W2964118342 @default.
- W4386250512 cites W2964138017 @default.
- W4386250512 cites W2964303913 @default.
- W4386250512 cites W3015965768 @default.
- W4386250512 cites W3034854924 @default.
- W4386250512 cites W3035517717 @default.
- W4386250512 cites W3037181498 @default.
- W4386250512 cites W3090449556 @default.
- W4386250512 cites W3100297028 @default.
- W4386250512 cites W3138516171 @default.
- W4386250512 cites W3165058054 @default.
- W4386250512 cites W3203255640 @default.
- W4386250512 cites W4283731999 @default.
- W4386250512 cites W4285618474 @default.
- W4386250512 cites W4290996482 @default.
- W4386250512 cites W4304092130 @default.
- W4386250512 cites W4312159230 @default.
- W4386250512 cites W4313068071 @default.
- W4386250512 doi "https://doi.org/10.3390/app13179735" @default.
- W4386250512 hasPublicationYear "2023" @default.
- W4386250512 type Work @default.
- W4386250512 citedByCount "0" @default.
- W4386250512 crossrefType "journal-article" @default.
- W4386250512 hasAuthorship W4386250512A5003483157 @default.
- W4386250512 hasAuthorship W4386250512A5004401480 @default.
- W4386250512 hasAuthorship W4386250512A5012921096 @default.
- W4386250512 hasAuthorship W4386250512A5055424071 @default.
- W4386250512 hasBestOaLocation W43862505121 @default.
- W4386250512 hasConcept C11413529 @default.
- W4386250512 hasConcept C119599485 @default.
- W4386250512 hasConcept C119857082 @default.
- W4386250512 hasConcept C124101348 @default.
- W4386250512 hasConcept C127413603 @default.
- W4386250512 hasConcept C153180895 @default.
- W4386250512 hasConcept C154945302 @default.
- W4386250512 hasConcept C165801399 @default.
- W4386250512 hasConcept C41008148 @default.
- W4386250512 hasConcept C51823790 @default.
- W4386250512 hasConcept C66322947 @default.
- W4386250512 hasConceptScore W4386250512C11413529 @default.
- W4386250512 hasConceptScore W4386250512C119599485 @default.
- W4386250512 hasConceptScore W4386250512C119857082 @default.
- W4386250512 hasConceptScore W4386250512C124101348 @default.
- W4386250512 hasConceptScore W4386250512C127413603 @default.
- W4386250512 hasConceptScore W4386250512C153180895 @default.
- W4386250512 hasConceptScore W4386250512C154945302 @default.
- W4386250512 hasConceptScore W4386250512C165801399 @default.
- W4386250512 hasConceptScore W4386250512C41008148 @default.
- W4386250512 hasConceptScore W4386250512C51823790 @default.
- W4386250512 hasConceptScore W4386250512C66322947 @default.
- W4386250512 hasIssue "17" @default.
- W4386250512 hasLocation W43862505121 @default.
- W4386250512 hasOpenAccess W4386250512 @default.
- W4386250512 hasPrimaryLocation W43862505121 @default.
- W4386250512 hasRelatedWork W2961085424 @default.
- W4386250512 hasRelatedWork W3046775127 @default.
- W4386250512 hasRelatedWork W3170094116 @default.
- W4386250512 hasRelatedWork W4205958290 @default.
- W4386250512 hasRelatedWork W4285260836 @default.
- W4386250512 hasRelatedWork W4286629047 @default.
- W4386250512 hasRelatedWork W4306321456 @default.
- W4386250512 hasRelatedWork W4306674287 @default.
- W4386250512 hasRelatedWork W4386462264 @default.
- W4386250512 hasRelatedWork W4224009465 @default.
- W4386250512 hasVolume "13" @default.
- W4386250512 isParatext "false" @default.
- W4386250512 isRetracted "false" @default.