Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386250621> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4386250621 abstract "We report a flexible language-model-based deep learning strategy, applied here to solve complex forward and inverse problems in protein modeling, based on an attention neural network that integrates transformer and graph convolutional architectures in a causal multi-headed graph mechanism, to realize a generative pretrained model. The model is applied to predict the secondary structure content (per-residue level and overall content), protein solubility, and sequencing tasks. Further trained on inverse tasks, the model is rendered capable of designing proteins with these properties as target features. The model is formulated as a general framework, completely prompt-based, and can be adapted for a variety of downstream tasks. We find that adding additional tasks yields emergent synergies that the model exploits in improving overall performance, beyond what would be possible by training a model on each dataset alone. Case studies are presented to validate the method, yielding protein designs specifically focused on structural materials, but also exploring the applicability in the design of soluble, antimicrobial biomaterials. While our model is trained to ultimately perform eight distinct tasks, with available datasets, it can be extended to solve additional problems. In a broader sense, this study illustrates a form of multiscale modeling that relates a set of ultimate building blocks (here, byte-level utf8 characters that define the nature of the physical system at hand) to complex output. This materiomic scheme captures complex emergent relationships between universal building block and resulting properties, via a synergizing learning capacity, to express a set of potentialities embedded in the knowledge used in training via the interplay of universality and diversity. Significance statement: Predicting the properties of materials based on a flexible description of their structure, environment, or process, is a long-standing challenge in multiscale modeling. Our MaterioFormer language model, trained to solve forward and inverse tasks, incorporates a deep learning capacity through attention and graph strategies to yield a multimodal approach to model and design materials. Since our model is prompt-based and information is encoded consistently via byte-level utf8 tokenization, it can process diverse modalities of information, such as sequence data, description of tasks, and numbers, and offers a flexible workflow that integrates human intelligence and artificial intelligence. Autoregressive training, using pre-training against a large unlabeled dataset, allows for straightforward adjustment of specific objectives." @default.
- W4386250621 created "2023-08-30" @default.
- W4386250621 creator A5025854647 @default.
- W4386250621 date "2023-08-28" @default.
- W4386250621 modified "2023-09-27" @default.
- W4386250621 title "Generative pretrained autoregressive transformer graph neural network applied to the analysis and discovery of novel proteins" @default.
- W4386250621 cites W2008708467 @default.
- W4386250621 cites W2029860888 @default.
- W4386250621 cites W2031243420 @default.
- W4386250621 cites W2055043387 @default.
- W4386250621 cites W2086238435 @default.
- W4386250621 cites W2126103104 @default.
- W4386250621 cites W2166712553 @default.
- W4386250621 cites W2328408229 @default.
- W4386250621 cites W2537565033 @default.
- W4386250621 cites W2758941972 @default.
- W4386250621 cites W2784270883 @default.
- W4386250621 cites W2796125116 @default.
- W4386250621 cites W2810943981 @default.
- W4386250621 cites W2899245817 @default.
- W4386250621 cites W2949867299 @default.
- W4386250621 cites W2974272848 @default.
- W4386250621 cites W2978281981 @default.
- W4386250621 cites W3092584515 @default.
- W4386250621 cites W3100751385 @default.
- W4386250621 cites W3103092523 @default.
- W4386250621 cites W3129073614 @default.
- W4386250621 cites W3180355996 @default.
- W4386250621 cites W3202214970 @default.
- W4386250621 cites W3204392606 @default.
- W4386250621 cites W3212854871 @default.
- W4386250621 cites W3217360046 @default.
- W4386250621 cites W4210738256 @default.
- W4386250621 cites W4224020136 @default.
- W4386250621 cites W4225724920 @default.
- W4386250621 cites W4283759486 @default.
- W4386250621 cites W4292508613 @default.
- W4386250621 cites W4296709731 @default.
- W4386250621 cites W4309791143 @default.
- W4386250621 cites W4320713584 @default.
- W4386250621 cites W4362676597 @default.
- W4386250621 cites W4366520892 @default.
- W4386250621 cites W4366815931 @default.
- W4386250621 cites W4367175126 @default.
- W4386250621 doi "https://doi.org/10.1063/5.0157367" @default.
- W4386250621 hasPublicationYear "2023" @default.
- W4386250621 type Work @default.
- W4386250621 citedByCount "0" @default.
- W4386250621 crossrefType "journal-article" @default.
- W4386250621 hasAuthorship W4386250621A5025854647 @default.
- W4386250621 hasBestOaLocation W43862506211 @default.
- W4386250621 hasConcept C119857082 @default.
- W4386250621 hasConcept C121332964 @default.
- W4386250621 hasConcept C132525143 @default.
- W4386250621 hasConcept C154945302 @default.
- W4386250621 hasConcept C165696696 @default.
- W4386250621 hasConcept C165801399 @default.
- W4386250621 hasConcept C167966045 @default.
- W4386250621 hasConcept C38652104 @default.
- W4386250621 hasConcept C39890363 @default.
- W4386250621 hasConcept C41008148 @default.
- W4386250621 hasConcept C50644808 @default.
- W4386250621 hasConcept C62520636 @default.
- W4386250621 hasConcept C66322947 @default.
- W4386250621 hasConcept C80444323 @default.
- W4386250621 hasConceptScore W4386250621C119857082 @default.
- W4386250621 hasConceptScore W4386250621C121332964 @default.
- W4386250621 hasConceptScore W4386250621C132525143 @default.
- W4386250621 hasConceptScore W4386250621C154945302 @default.
- W4386250621 hasConceptScore W4386250621C165696696 @default.
- W4386250621 hasConceptScore W4386250621C165801399 @default.
- W4386250621 hasConceptScore W4386250621C167966045 @default.
- W4386250621 hasConceptScore W4386250621C38652104 @default.
- W4386250621 hasConceptScore W4386250621C39890363 @default.
- W4386250621 hasConceptScore W4386250621C41008148 @default.
- W4386250621 hasConceptScore W4386250621C50644808 @default.
- W4386250621 hasConceptScore W4386250621C62520636 @default.
- W4386250621 hasConceptScore W4386250621C66322947 @default.
- W4386250621 hasConceptScore W4386250621C80444323 @default.
- W4386250621 hasIssue "8" @default.
- W4386250621 hasLocation W43862506211 @default.
- W4386250621 hasOpenAccess W4386250621 @default.
- W4386250621 hasPrimaryLocation W43862506211 @default.
- W4386250621 hasRelatedWork W1534961803 @default.
- W4386250621 hasRelatedWork W3008081459 @default.
- W4386250621 hasRelatedWork W4287126800 @default.
- W4386250621 hasRelatedWork W4313303565 @default.
- W4386250621 hasRelatedWork W4313567241 @default.
- W4386250621 hasRelatedWork W4360585189 @default.
- W4386250621 hasRelatedWork W4379924457 @default.
- W4386250621 hasRelatedWork W4385374140 @default.
- W4386250621 hasRelatedWork W2310403681 @default.
- W4386250621 hasRelatedWork W4225997484 @default.
- W4386250621 hasVolume "134" @default.
- W4386250621 isParatext "false" @default.
- W4386250621 isRetracted "false" @default.
- W4386250621 workType "article" @default.