Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386253500> ?p ?o ?g. }
- W4386253500 endingPage "12" @default.
- W4386253500 startingPage "1" @default.
- W4386253500 abstract "We study the Bayesian multi-task variable selection problem, where the goal is to select activated variables for multiple related data sets simultaneously. We propose a new variational Bayes algorithm which generalizes and improves the recently developed “sum of single effects” model of Wang et al. (2020a). Motivated by differential gene network analysis in biology, we further extend our method to joint structure learning of multiple directed acyclic graphical models, a problem known to be computationally highly challenging. We propose a novel order MCMC sampler where our multi-task variable selection algorithm is used to quickly evaluate the posterior probability of each ordering. Both simulation studies and real gene expression data analysis are conducted to show the efficiency of our method. Finally, we also prove a posterior consistency result for multi-task variable selection, which provides a theoretical guarantee for the proposed algorithms. Supplementary materials for this article are available online." @default.
- W4386253500 created "2023-08-30" @default.
- W4386253500 creator A5052075967 @default.
- W4386253500 creator A5052889294 @default.
- W4386253500 date "2023-08-28" @default.
- W4386253500 modified "2023-10-01" @default.
- W4386253500 title "Bayesian Multi-task Variable Selection with an Application to Differential DAG Analysis" @default.
- W4386253500 cites W1483883706 @default.
- W4386253500 cites W1969415786 @default.
- W4386253500 cites W1981299323 @default.
- W4386253500 cites W1981657694 @default.
- W4386253500 cites W1990885553 @default.
- W4386253500 cites W1998767819 @default.
- W4386253500 cites W2007069447 @default.
- W4386253500 cites W2016013112 @default.
- W4386253500 cites W2053775054 @default.
- W4386253500 cites W2094015288 @default.
- W4386253500 cites W2100270478 @default.
- W4386253500 cites W2115984935 @default.
- W4386253500 cites W2131593373 @default.
- W4386253500 cites W2142857211 @default.
- W4386253500 cites W2161494210 @default.
- W4386253500 cites W2165009258 @default.
- W4386253500 cites W2562162676 @default.
- W4386253500 cites W2762763764 @default.
- W4386253500 cites W2783975438 @default.
- W4386253500 cites W2887007322 @default.
- W4386253500 cites W2914349589 @default.
- W4386253500 cites W2919499541 @default.
- W4386253500 cites W2963174822 @default.
- W4386253500 cites W2963937909 @default.
- W4386253500 cites W3002588292 @default.
- W4386253500 cites W3004221309 @default.
- W4386253500 cites W3005063804 @default.
- W4386253500 cites W3009849066 @default.
- W4386253500 cites W3036206386 @default.
- W4386253500 cites W3038266670 @default.
- W4386253500 cites W3042068575 @default.
- W4386253500 cites W3049467591 @default.
- W4386253500 cites W3087889716 @default.
- W4386253500 cites W3101380508 @default.
- W4386253500 cites W3104410795 @default.
- W4386253500 cites W3125452207 @default.
- W4386253500 cites W3141797743 @default.
- W4386253500 cites W3166869877 @default.
- W4386253500 cites W4200488763 @default.
- W4386253500 doi "https://doi.org/10.1080/10618600.2023.2252023" @default.
- W4386253500 hasPublicationYear "2023" @default.
- W4386253500 type Work @default.
- W4386253500 citedByCount "0" @default.
- W4386253500 crossrefType "journal-article" @default.
- W4386253500 hasAuthorship W4386253500A5052075967 @default.
- W4386253500 hasAuthorship W4386253500A5052889294 @default.
- W4386253500 hasConcept C107673813 @default.
- W4386253500 hasConcept C11413529 @default.
- W4386253500 hasConcept C119857082 @default.
- W4386253500 hasConcept C124101348 @default.
- W4386253500 hasConcept C134306372 @default.
- W4386253500 hasConcept C148483581 @default.
- W4386253500 hasConcept C154945302 @default.
- W4386253500 hasConcept C155846161 @default.
- W4386253500 hasConcept C182365436 @default.
- W4386253500 hasConcept C207201462 @default.
- W4386253500 hasConcept C2776436953 @default.
- W4386253500 hasConcept C33724603 @default.
- W4386253500 hasConcept C33923547 @default.
- W4386253500 hasConcept C41008148 @default.
- W4386253500 hasConcept C74197172 @default.
- W4386253500 hasConcept C81917197 @default.
- W4386253500 hasConceptScore W4386253500C107673813 @default.
- W4386253500 hasConceptScore W4386253500C11413529 @default.
- W4386253500 hasConceptScore W4386253500C119857082 @default.
- W4386253500 hasConceptScore W4386253500C124101348 @default.
- W4386253500 hasConceptScore W4386253500C134306372 @default.
- W4386253500 hasConceptScore W4386253500C148483581 @default.
- W4386253500 hasConceptScore W4386253500C154945302 @default.
- W4386253500 hasConceptScore W4386253500C155846161 @default.
- W4386253500 hasConceptScore W4386253500C182365436 @default.
- W4386253500 hasConceptScore W4386253500C207201462 @default.
- W4386253500 hasConceptScore W4386253500C2776436953 @default.
- W4386253500 hasConceptScore W4386253500C33724603 @default.
- W4386253500 hasConceptScore W4386253500C33923547 @default.
- W4386253500 hasConceptScore W4386253500C41008148 @default.
- W4386253500 hasConceptScore W4386253500C74197172 @default.
- W4386253500 hasConceptScore W4386253500C81917197 @default.
- W4386253500 hasFunder F4320320373 @default.
- W4386253500 hasLocation W43862535001 @default.
- W4386253500 hasOpenAccess W4386253500 @default.
- W4386253500 hasPrimaryLocation W43862535001 @default.
- W4386253500 hasRelatedWork W12712126 @default.
- W4386253500 hasRelatedWork W1505105018 @default.
- W4386253500 hasRelatedWork W2409861558 @default.
- W4386253500 hasRelatedWork W2808615969 @default.
- W4386253500 hasRelatedWork W2921518676 @default.
- W4386253500 hasRelatedWork W3200179079 @default.
- W4386253500 hasRelatedWork W4200510307 @default.
- W4386253500 hasRelatedWork W4293525103 @default.
- W4386253500 hasRelatedWork W4308610551 @default.