Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386261702> ?p ?o ?g. }
- W4386261702 endingPage "93179" @default.
- W4386261702 startingPage "93160" @default.
- W4386261702 abstract "Medical device failure and maintenance records are essential information, as some nations lack dedicated systems for capturing this valuable data. In addition to making healthcare more intelligent and individualized, machine learning has the potential to transform the conventional healthcare system. Optimizing AI models in decision-making could mitigate the effects of three research issues: malfunctioning medical devices, high maintenance costs, and the lack of a strategic maintenance framework. This study proposes a data-driven machine-learning model for predicting medical device failure. The proposed predictive model is developed using multimodal data of structured maintenance and unstructured text narrative of maintenance reports to predict the failure of 8,294 critical medical devices. In developing the model, 44 varieties of essential medical devices from 15 healthcare institutions in Malaysia are utilized. A classification problem is addressed by classifying failure into three prediction classes: (i) class 1, unlikely to fail within the first three years, (ii) class 2, likely to fail within three years; and (iii) class 3, likely to fail after three years from the date of commissioning. The topic modelling and synthesis strategy: Latent Dirichlet Allocation is applied to unstructured data in order to uncover concealed patterns in maintenance notes captured during failures. In addition, sensitivity analysis is performed to select only the most significant parameters affecting the failure performance of the medical device. Then, four machine learning algorithms and three deep learning networks are evaluated to determine the best predictive model. Based on the performance evaluation, the Ensemble Classifier is further optimized and demonstrates improved accuracy of 88.80%, specificity of 94.41%, recall of 88.82%, precision of 88.46%, and F1 Score of 88.84%. The study proves a reduction in intervention from 18 to 8 features and a reduction in training time from 1660.5 to 901.66 seconds for comprehensive model development." @default.
- W4386261702 created "2023-08-30" @default.
- W4386261702 creator A5019091896 @default.
- W4386261702 creator A5035195192 @default.
- W4386261702 creator A5038225956 @default.
- W4386261702 creator A5060450772 @default.
- W4386261702 creator A5065505330 @default.
- W4386261702 creator A5071510299 @default.
- W4386261702 date "2023-01-01" @default.
- W4386261702 modified "2023-10-01" @default.
- W4386261702 title "Medical Device Failure Predictions through AI-Driven Analysis of Multimodal Maintenance Records" @default.
- W4386261702 cites W1552111246 @default.
- W4386261702 cites W1986241067 @default.
- W4386261702 cites W2017067922 @default.
- W4386261702 cites W2073222384 @default.
- W4386261702 cites W2073256624 @default.
- W4386261702 cites W2074553511 @default.
- W4386261702 cites W2085858518 @default.
- W4386261702 cites W2153678774 @default.
- W4386261702 cites W2160689147 @default.
- W4386261702 cites W2415512363 @default.
- W4386261702 cites W2734969655 @default.
- W4386261702 cites W2738563279 @default.
- W4386261702 cites W2793922490 @default.
- W4386261702 cites W2889809771 @default.
- W4386261702 cites W2897098357 @default.
- W4386261702 cites W2900469432 @default.
- W4386261702 cites W2913795560 @default.
- W4386261702 cites W2920083100 @default.
- W4386261702 cites W2944680307 @default.
- W4386261702 cites W2954339419 @default.
- W4386261702 cites W2969066554 @default.
- W4386261702 cites W2982214856 @default.
- W4386261702 cites W2983280015 @default.
- W4386261702 cites W3025213548 @default.
- W4386261702 cites W3033437210 @default.
- W4386261702 cites W3042037326 @default.
- W4386261702 cites W3088258393 @default.
- W4386261702 cites W3181131554 @default.
- W4386261702 cites W3196564467 @default.
- W4386261702 cites W3199160282 @default.
- W4386261702 cites W3211435343 @default.
- W4386261702 cites W4220847658 @default.
- W4386261702 cites W4226126190 @default.
- W4386261702 cites W4238567560 @default.
- W4386261702 cites W4240205293 @default.
- W4386261702 cites W4248317381 @default.
- W4386261702 cites W4280499125 @default.
- W4386261702 cites W4291000415 @default.
- W4386261702 cites W4309449845 @default.
- W4386261702 doi "https://doi.org/10.1109/access.2023.3309671" @default.
- W4386261702 hasPublicationYear "2023" @default.
- W4386261702 type Work @default.
- W4386261702 citedByCount "0" @default.
- W4386261702 crossrefType "journal-article" @default.
- W4386261702 hasAuthorship W4386261702A5019091896 @default.
- W4386261702 hasAuthorship W4386261702A5035195192 @default.
- W4386261702 hasAuthorship W4386261702A5038225956 @default.
- W4386261702 hasAuthorship W4386261702A5060450772 @default.
- W4386261702 hasAuthorship W4386261702A5065505330 @default.
- W4386261702 hasAuthorship W4386261702A5071510299 @default.
- W4386261702 hasBestOaLocation W43862617021 @default.
- W4386261702 hasConcept C119857082 @default.
- W4386261702 hasConcept C127413603 @default.
- W4386261702 hasConcept C154945302 @default.
- W4386261702 hasConcept C171686336 @default.
- W4386261702 hasConcept C200601418 @default.
- W4386261702 hasConcept C2777212361 @default.
- W4386261702 hasConcept C41008148 @default.
- W4386261702 hasConcept C500882744 @default.
- W4386261702 hasConcept C70452415 @default.
- W4386261702 hasConcept C95623464 @default.
- W4386261702 hasConceptScore W4386261702C119857082 @default.
- W4386261702 hasConceptScore W4386261702C127413603 @default.
- W4386261702 hasConceptScore W4386261702C154945302 @default.
- W4386261702 hasConceptScore W4386261702C171686336 @default.
- W4386261702 hasConceptScore W4386261702C200601418 @default.
- W4386261702 hasConceptScore W4386261702C2777212361 @default.
- W4386261702 hasConceptScore W4386261702C41008148 @default.
- W4386261702 hasConceptScore W4386261702C500882744 @default.
- W4386261702 hasConceptScore W4386261702C70452415 @default.
- W4386261702 hasConceptScore W4386261702C95623464 @default.
- W4386261702 hasFunder F4320321709 @default.
- W4386261702 hasFunder F4320322604 @default.
- W4386261702 hasLocation W43862617021 @default.
- W4386261702 hasOpenAccess W4386261702 @default.
- W4386261702 hasPrimaryLocation W43862617021 @default.
- W4386261702 hasRelatedWork W2556319748 @default.
- W4386261702 hasRelatedWork W2961085424 @default.
- W4386261702 hasRelatedWork W3046775127 @default.
- W4386261702 hasRelatedWork W3170094116 @default.
- W4386261702 hasRelatedWork W3200179079 @default.
- W4386261702 hasRelatedWork W4285260836 @default.
- W4386261702 hasRelatedWork W4286629047 @default.
- W4386261702 hasRelatedWork W4306321456 @default.
- W4386261702 hasRelatedWork W4306674287 @default.
- W4386261702 hasRelatedWork W4224009465 @default.
- W4386261702 hasVolume "11" @default.