Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386270105> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4386270105 abstract "Scientific machine learning for learning dynamical systems is a powerful tool that combines data-driven modeling models, physics-based modeling, and empirical knowledge. It plays an essential role in an engineering design cycle and digital twinning. In this work, we primarily focus on an operator inference methodology that builds dynamical models, preferably in low-dimension, with a prior hypothesis on the model structure, often determined by known physics or given by experts. Then, for inference, we aim to learn the operators of a model by setting up an appropriate optimization problem. One of the critical properties of dynamical systems is{stability. However, such a property is not guaranteed by the inferred models. In this work, we propose inference formulations to learn quadratic models, which are stable by design. Precisely, we discuss the parameterization of quadratic systems that are locally and globally stable. Moreover, for quadratic systems with no stable point yet bounded (e.g., Chaotic Lorenz model), we discuss an attractive trapping region philosophy and a parameterization of such systems. Using those parameterizations, we set up inference problems, which are then solved using a gradient-based optimization method. Furthermore, to avoid numerical derivatives and still learn continuous systems, we make use of an integration form of differential equations. We present several numerical examples, illustrating the preservation of stability and discussing its comparison with the existing state-of-the-art approach to infer operators. By means of numerical examples, we also demonstrate how proposed methods are employed to discover governing equations and energy-preserving models." @default.
- W4386270105 created "2023-08-31" @default.
- W4386270105 creator A5007136568 @default.
- W4386270105 creator A5060985095 @default.
- W4386270105 creator A5080481874 @default.
- W4386270105 date "2023-08-26" @default.
- W4386270105 modified "2023-09-30" @default.
- W4386270105 title "Guaranteed Stable Quadratic Models and their applications in SINDy and Operator Inference" @default.
- W4386270105 doi "https://doi.org/10.48550/arxiv.2308.13819" @default.
- W4386270105 hasPublicationYear "2023" @default.
- W4386270105 type Work @default.
- W4386270105 citedByCount "0" @default.
- W4386270105 crossrefType "posted-content" @default.
- W4386270105 hasAuthorship W4386270105A5007136568 @default.
- W4386270105 hasAuthorship W4386270105A5060985095 @default.
- W4386270105 hasAuthorship W4386270105A5080481874 @default.
- W4386270105 hasBestOaLocation W43862701051 @default.
- W4386270105 hasConcept C104317684 @default.
- W4386270105 hasConcept C112972136 @default.
- W4386270105 hasConcept C119857082 @default.
- W4386270105 hasConcept C121332964 @default.
- W4386270105 hasConcept C126255220 @default.
- W4386270105 hasConcept C129844170 @default.
- W4386270105 hasConcept C154945302 @default.
- W4386270105 hasConcept C158448853 @default.
- W4386270105 hasConcept C17020691 @default.
- W4386270105 hasConcept C185592680 @default.
- W4386270105 hasConcept C2524010 @default.
- W4386270105 hasConcept C2776214188 @default.
- W4386270105 hasConcept C28826006 @default.
- W4386270105 hasConcept C33923547 @default.
- W4386270105 hasConcept C33962884 @default.
- W4386270105 hasConcept C41008148 @default.
- W4386270105 hasConcept C55493867 @default.
- W4386270105 hasConcept C62520636 @default.
- W4386270105 hasConcept C79379906 @default.
- W4386270105 hasConcept C80444323 @default.
- W4386270105 hasConcept C86339819 @default.
- W4386270105 hasConceptScore W4386270105C104317684 @default.
- W4386270105 hasConceptScore W4386270105C112972136 @default.
- W4386270105 hasConceptScore W4386270105C119857082 @default.
- W4386270105 hasConceptScore W4386270105C121332964 @default.
- W4386270105 hasConceptScore W4386270105C126255220 @default.
- W4386270105 hasConceptScore W4386270105C129844170 @default.
- W4386270105 hasConceptScore W4386270105C154945302 @default.
- W4386270105 hasConceptScore W4386270105C158448853 @default.
- W4386270105 hasConceptScore W4386270105C17020691 @default.
- W4386270105 hasConceptScore W4386270105C185592680 @default.
- W4386270105 hasConceptScore W4386270105C2524010 @default.
- W4386270105 hasConceptScore W4386270105C2776214188 @default.
- W4386270105 hasConceptScore W4386270105C28826006 @default.
- W4386270105 hasConceptScore W4386270105C33923547 @default.
- W4386270105 hasConceptScore W4386270105C33962884 @default.
- W4386270105 hasConceptScore W4386270105C41008148 @default.
- W4386270105 hasConceptScore W4386270105C55493867 @default.
- W4386270105 hasConceptScore W4386270105C62520636 @default.
- W4386270105 hasConceptScore W4386270105C79379906 @default.
- W4386270105 hasConceptScore W4386270105C80444323 @default.
- W4386270105 hasConceptScore W4386270105C86339819 @default.
- W4386270105 hasLocation W43862701051 @default.
- W4386270105 hasOpenAccess W4386270105 @default.
- W4386270105 hasPrimaryLocation W43862701051 @default.
- W4386270105 hasRelatedWork W114877832 @default.
- W4386270105 hasRelatedWork W2076875872 @default.
- W4386270105 hasRelatedWork W2115021875 @default.
- W4386270105 hasRelatedWork W2149561803 @default.
- W4386270105 hasRelatedWork W2311461699 @default.
- W4386270105 hasRelatedWork W2314033183 @default.
- W4386270105 hasRelatedWork W2470330431 @default.
- W4386270105 hasRelatedWork W2566799268 @default.
- W4386270105 hasRelatedWork W2740632457 @default.
- W4386270105 hasRelatedWork W2897861372 @default.
- W4386270105 isParatext "false" @default.
- W4386270105 isRetracted "false" @default.
- W4386270105 workType "article" @default.