Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386272009> ?p ?o ?g. }
- W4386272009 abstract "ABSTRACT Assuring that cell therapy products are safe before releasing them for use in patients is critical. Currently, compendial sterility testing for bacteria and fungi can take 7–14 days. The goal of this work was to develop a rapid untargeted approach for the sensitive detection of microbial contaminants at low abundance from low volume samples during the manufacturing process of cell therapies. We developed a long-read sequencing methodology using Oxford Nanopore Technologies MinION platform with 16S and 18S amplicon sequencing to detect USP <71> organisms and other microbial species. Reads are classified metagenomically to predict the microbial species. We used an extreme gradient boosting machine learning algorithm (XGBoost) to first assess if a sample is contaminated, and second, determine whether the predicted contaminant is correctly classified or misclassified. The model was used to make a final decision on the sterility status of the input sample. An optimized experimental and bioinformatics pipeline starting from spiked species through to sequenced reads allowed for the detection of microbial samples at 10 colony-forming units (CFU)/mL using metagenomic classification. Machine learning can be coupled with long-read sequencing to detect and identify sample sterility status and microbial species present in T-cell cultures, including the USP <71> organisms to 10 CFU/mL. IMPORTANCE This research presents a novel method for rapidly and accurately detecting microbial contaminants in cell therapy products, which is essential for ensuring patient safety. Traditional testing methods are time-consuming, taking 7–14 days, while our approach can significantly reduce this time. By combining advanced long-read nanopore sequencing techniques and machine learning, we can effectively identify the presence and types of microbial contaminants at low abundance levels. This breakthrough has the potential to improve the safety and efficiency of cell therapy manufacturing, leading to better patient outcomes and a more streamlined production process." @default.
- W4386272009 created "2023-08-31" @default.
- W4386272009 creator A5003269608 @default.
- W4386272009 creator A5007917726 @default.
- W4386272009 creator A5014395012 @default.
- W4386272009 creator A5019765983 @default.
- W4386272009 creator A5031503650 @default.
- W4386272009 creator A5034516746 @default.
- W4386272009 creator A5053126836 @default.
- W4386272009 creator A5061695055 @default.
- W4386272009 creator A5062633062 @default.
- W4386272009 creator A5066247614 @default.
- W4386272009 creator A5073665836 @default.
- W4386272009 creator A5088944993 @default.
- W4386272009 creator A5091631519 @default.
- W4386272009 date "2023-08-30" @default.
- W4386272009 modified "2023-10-06" @default.
- W4386272009 title "Machine learning-based detection of adventitious microbes in T-cell therapy cultures using long-read sequencing" @default.
- W4386272009 cites W1630717967 @default.
- W4386272009 cites W2002591516 @default.
- W4386272009 cites W2010084163 @default.
- W4386272009 cites W2109497380 @default.
- W4386272009 cites W2170486072 @default.
- W4386272009 cites W2611957242 @default.
- W4386272009 cites W2613942570 @default.
- W4386272009 cites W2750914071 @default.
- W4386272009 cites W2893909145 @default.
- W4386272009 cites W2898280479 @default.
- W4386272009 cites W2904328447 @default.
- W4386272009 cites W2950001186 @default.
- W4386272009 cites W2950964375 @default.
- W4386272009 cites W2951160681 @default.
- W4386272009 cites W2951278111 @default.
- W4386272009 cites W2951530002 @default.
- W4386272009 cites W2952668961 @default.
- W4386272009 cites W2986365437 @default.
- W4386272009 cites W2996962598 @default.
- W4386272009 cites W3007601977 @default.
- W4386272009 cites W3016757214 @default.
- W4386272009 cites W3018259108 @default.
- W4386272009 cites W3093800398 @default.
- W4386272009 cites W3108211628 @default.
- W4386272009 cites W3117677435 @default.
- W4386272009 cites W3120817351 @default.
- W4386272009 cites W3125609739 @default.
- W4386272009 cites W3127238141 @default.
- W4386272009 cites W3128465814 @default.
- W4386272009 cites W3138368294 @default.
- W4386272009 cites W3208391788 @default.
- W4386272009 cites W4226017353 @default.
- W4386272009 cites W4242731190 @default.
- W4386272009 cites W4280510551 @default.
- W4386272009 cites W855819222 @default.
- W4386272009 doi "https://doi.org/10.1128/spectrum.01350-23" @default.
- W4386272009 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37646508" @default.
- W4386272009 hasPublicationYear "2023" @default.
- W4386272009 type Work @default.
- W4386272009 citedByCount "0" @default.
- W4386272009 crossrefType "journal-article" @default.
- W4386272009 hasAuthorship W4386272009A5003269608 @default.
- W4386272009 hasAuthorship W4386272009A5007917726 @default.
- W4386272009 hasAuthorship W4386272009A5014395012 @default.
- W4386272009 hasAuthorship W4386272009A5019765983 @default.
- W4386272009 hasAuthorship W4386272009A5031503650 @default.
- W4386272009 hasAuthorship W4386272009A5034516746 @default.
- W4386272009 hasAuthorship W4386272009A5053126836 @default.
- W4386272009 hasAuthorship W4386272009A5061695055 @default.
- W4386272009 hasAuthorship W4386272009A5062633062 @default.
- W4386272009 hasAuthorship W4386272009A5066247614 @default.
- W4386272009 hasAuthorship W4386272009A5073665836 @default.
- W4386272009 hasAuthorship W4386272009A5088944993 @default.
- W4386272009 hasAuthorship W4386272009A5091631519 @default.
- W4386272009 hasBestOaLocation W43862720091 @default.
- W4386272009 hasConcept C104317684 @default.
- W4386272009 hasConcept C119857082 @default.
- W4386272009 hasConcept C126513998 @default.
- W4386272009 hasConcept C150903083 @default.
- W4386272009 hasConcept C15151743 @default.
- W4386272009 hasConcept C154945302 @default.
- W4386272009 hasConcept C2776687438 @default.
- W4386272009 hasConcept C2779927696 @default.
- W4386272009 hasConcept C41008148 @default.
- W4386272009 hasConcept C49105822 @default.
- W4386272009 hasConcept C51679486 @default.
- W4386272009 hasConcept C54355233 @default.
- W4386272009 hasConcept C70721500 @default.
- W4386272009 hasConcept C8185291 @default.
- W4386272009 hasConcept C86803240 @default.
- W4386272009 hasConceptScore W4386272009C104317684 @default.
- W4386272009 hasConceptScore W4386272009C119857082 @default.
- W4386272009 hasConceptScore W4386272009C126513998 @default.
- W4386272009 hasConceptScore W4386272009C150903083 @default.
- W4386272009 hasConceptScore W4386272009C15151743 @default.
- W4386272009 hasConceptScore W4386272009C154945302 @default.
- W4386272009 hasConceptScore W4386272009C2776687438 @default.
- W4386272009 hasConceptScore W4386272009C2779927696 @default.
- W4386272009 hasConceptScore W4386272009C41008148 @default.
- W4386272009 hasConceptScore W4386272009C49105822 @default.
- W4386272009 hasConceptScore W4386272009C51679486 @default.
- W4386272009 hasConceptScore W4386272009C54355233 @default.