Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386276178> ?p ?o ?g. }
- W4386276178 endingPage "8352" @default.
- W4386276178 startingPage "8334" @default.
- W4386276178 abstract "Up-to-date canopy height model (CHM) estimates are of key importance for forest resources monitoring and disturbance analysis. In this work we present a study on the potential of Deep Learning (DL) for the regression of forest height from TanDEM-X bistatic interferometric (InSAR) data. We propose a novel fully convolutional neural network (CNN) framework, trained in a supervised manner using reference CHM measurements derived from the LiDAR LVIS airborne sensor from NASA. The reference measurements were acquired during the joint NASA-ESA 2016 AfriSAR campaign over five sites in Gabon, Africa, characterized by the presence of different kinds of vegetation, spanning from tropical primary forests to mangroves. Together with the DL architecture and training strategy, we present a series of experiments to assess the impact of different input features on the network estimation accuracy (in particular of bistatic InSAR-related ones). When tested on all considered sites, the proposed DL model achieves an overall performance of 1.46m mean error, 4.2m mean absolute error and 15.06% mean absolute percentage error. Furthermore, we perform a spatial transfer analysis aimed at deriving preliminary insights on the generalization capability of the network when trained and tested on data sets acquired over different locations, combining different kinds of tropical vegetation. The obtained results are promising and already in line with state-of-the-art methods based on both physical-based modelling and data-driven approaches, with the remarkable advantage of requiring only one single TanDEM-X acquisition at inference time." @default.
- W4386276178 created "2023-08-31" @default.
- W4386276178 creator A5002883250 @default.
- W4386276178 creator A5006095323 @default.
- W4386276178 creator A5018231294 @default.
- W4386276178 creator A5023980873 @default.
- W4386276178 date "2023-01-01" @default.
- W4386276178 modified "2023-10-02" @default.
- W4386276178 title "A Deep Learning Framework for the Estimation of Forest Height from Bistatic TanDEM-X Data" @default.
- W4386276178 cites W1979821482 @default.
- W4386276178 cites W1982355028 @default.
- W4386276178 cites W1983885180 @default.
- W4386276178 cites W1992541517 @default.
- W4386276178 cites W2001470990 @default.
- W4386276178 cites W2025286313 @default.
- W4386276178 cites W2025969570 @default.
- W4386276178 cites W2033489424 @default.
- W4386276178 cites W2039232922 @default.
- W4386276178 cites W2044987471 @default.
- W4386276178 cites W2050401936 @default.
- W4386276178 cites W2056435747 @default.
- W4386276178 cites W2090272134 @default.
- W4386276178 cites W2092911007 @default.
- W4386276178 cites W2110764636 @default.
- W4386276178 cites W2136245122 @default.
- W4386276178 cites W2141414687 @default.
- W4386276178 cites W2143716001 @default.
- W4386276178 cites W2462610241 @default.
- W4386276178 cites W2484561438 @default.
- W4386276178 cites W2515294851 @default.
- W4386276178 cites W2528636820 @default.
- W4386276178 cites W2530398026 @default.
- W4386276178 cites W2537504540 @default.
- W4386276178 cites W2538244214 @default.
- W4386276178 cites W2563018617 @default.
- W4386276178 cites W2587481768 @default.
- W4386276178 cites W2588641173 @default.
- W4386276178 cites W2615774114 @default.
- W4386276178 cites W2755431016 @default.
- W4386276178 cites W2756027408 @default.
- W4386276178 cites W2789815737 @default.
- W4386276178 cites W2793745122 @default.
- W4386276178 cites W2890954076 @default.
- W4386276178 cites W2891271911 @default.
- W4386276178 cites W2911554154 @default.
- W4386276178 cites W2922303281 @default.
- W4386276178 cites W2966381923 @default.
- W4386276178 cites W2968347155 @default.
- W4386276178 cites W2971084971 @default.
- W4386276178 cites W3003178186 @default.
- W4386276178 cites W3003509779 @default.
- W4386276178 cites W3031029303 @default.
- W4386276178 cites W3093603765 @default.
- W4386276178 cites W3101559345 @default.
- W4386276178 cites W3112056203 @default.
- W4386276178 cites W3118269909 @default.
- W4386276178 cites W3120308316 @default.
- W4386276178 cites W3128476715 @default.
- W4386276178 cites W3132507257 @default.
- W4386276178 cites W3181390195 @default.
- W4386276178 cites W3205049117 @default.
- W4386276178 cites W4225342735 @default.
- W4386276178 cites W4311173829 @default.
- W4386276178 cites W4321487974 @default.
- W4386276178 doi "https://doi.org/10.1109/jstars.2023.3310209" @default.
- W4386276178 hasPublicationYear "2023" @default.
- W4386276178 type Work @default.
- W4386276178 citedByCount "0" @default.
- W4386276178 crossrefType "journal-article" @default.
- W4386276178 hasAuthorship W4386276178A5002883250 @default.
- W4386276178 hasAuthorship W4386276178A5006095323 @default.
- W4386276178 hasAuthorship W4386276178A5018231294 @default.
- W4386276178 hasAuthorship W4386276178A5023980873 @default.
- W4386276178 hasBestOaLocation W43862761781 @default.
- W4386276178 hasConcept C100102862 @default.
- W4386276178 hasConcept C105795698 @default.
- W4386276178 hasConcept C10929652 @default.
- W4386276178 hasConcept C139945424 @default.
- W4386276178 hasConcept C142724271 @default.
- W4386276178 hasConcept C153180895 @default.
- W4386276178 hasConcept C154945302 @default.
- W4386276178 hasConcept C205649164 @default.
- W4386276178 hasConcept C22286887 @default.
- W4386276178 hasConcept C2776133958 @default.
- W4386276178 hasConcept C33923547 @default.
- W4386276178 hasConcept C41008148 @default.
- W4386276178 hasConcept C51399673 @default.
- W4386276178 hasConcept C554190296 @default.
- W4386276178 hasConcept C62649853 @default.
- W4386276178 hasConcept C71924100 @default.
- W4386276178 hasConcept C76155785 @default.
- W4386276178 hasConcept C81363708 @default.
- W4386276178 hasConcept C87360688 @default.
- W4386276178 hasConceptScore W4386276178C100102862 @default.
- W4386276178 hasConceptScore W4386276178C105795698 @default.
- W4386276178 hasConceptScore W4386276178C10929652 @default.
- W4386276178 hasConceptScore W4386276178C139945424 @default.
- W4386276178 hasConceptScore W4386276178C142724271 @default.